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Abstract

Differential Privacy (DP) is the most popular statistical definition of privacy that is
now widely applied for a range of Machine Learning (ML) algorithms. Roughly, DP
guarantees that the output of the ML algorithm does not expose significantly more
information about any single training data point than is already available from
third party sources. However, this guarantee comes at a cost in terms of accuracy
the algorithm. A common empirical approach to close this gap between private
and non-private accuracy is through Semi-Supervised Learning (SSL) using public
unlabelled data. However, a rigorous understanding of when SSL helps has been
largely missing. In this work, we use the concept of compatibility functions to
show how unlabelled data can be used to provide better private labelled sample
complexity for learning common hypothesis classes like disjunctions and linear
halfspaces. Intuitively, first, our approach uses the unlabelled data and the guarantee
of compatibility to uncover low dimensional structures in the data. Then, private
supervised training is carried out on this low-dimensional structure thereby leading
to better accuracy with less private data.
On the empirical side, we show that this can be used to provide an explanation
for the excellent performance of SSL in private learning of deep neural networks.
We use state-of-the-art SSL algorithms like MoCov3 with ResNet50 and
WideResNet on CIFAR10 and CIFAR100 to show that SSL indeed uncovers a
low dimensional structure of the data — a low dimensional linear subspace where
the margin is preserved. This helps in learning a linear classifier on top of the SSL
representations privately with high test accuracy. We hope these insights will result
in developing new algorithms for semi-supervised private learning.

1 Introduction

Machine Learning (ML) algorithms have been shown to achieve remarkable performances in a wide
range of tasks including computer vision, natural language processing, and reinforcement learning.
However, recent works have shown that commonly used ML algorithms are extremely vulnerable
to privacy attacks [39]. Such attacks are capable of leaking sensitive user data, the algorithm is
trained on. As a result, there has been a large interest towards developing ML algorithms with
privacy guarantees. Differential Privacy (DP) [21] is the current de-facto standard for such guarantees.
Intuitively, DP limits the sensitivity of the ML algorithm to any single data point in the dataset.
However, the guarantee of differential privacy comes at a cost on the algorithm’s utility. Starting from
some of the earliest works in this field, the overarching message has been that nearly every problem
that is learnable in the non-private setting is also learnable in the private setting, albeit with a larger
sample size requirement [13, 29]. Since, then a range of work have characterised this exact cost in
terms of sample complexity [8, 9, 22].

Analogous to non-private risk minimisation, a common approach for ensuring DP in the standard
offline machine learning setting is through Differentially Private Empirical Risk Minimisation (DP-
ERM). This line of work was started by Chaudhuri et al. [16]. For the case of DP-ERM for convex
loss functions, Bassily et al. [7], Bun et al. [14] gave nearly optimal algorithms and showed the
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necessity of a polynomial dependence of the sample size on the dimension of the problem; something
that is not observed with non-private Empirical Risk Minimisation (ERM). Several works have tried
to improve this dependence for specific learning problems (see Section 2 for a detailed discussion.)

Semi-Supervised Learning (SSL) [15] has shown to be incredibly effective in a wide range of tasks
and is a common component of the pipeline for state-of-the-art ML algorithms models [10, 30, 34].
In the SSL framework, in addition to a small amount of labelled data Slab, a large but finite amount
of unlabelled data Sunl is available to the learning algorithm. Alon et al. [3] formally defined the
notion of Semi-Private Learning (SPL) to merge the definitions of DP and SSL in the PAC sense.
Intuitively, SPL protects the privacy of the labelled dataset Slab but not the unlabelled data Sunl. They
proposed a generic algorithm for semi-privately learning any infinite VC classH up to error α using
O
(

VC(H)
α

)
unlabelled samples and O

(
VC(H)
α

)
labelled samples. However, they have two main

limitations: their results are mainly applicable for infinite sized VC classes like thresholds but not
finite sized classes like disjunction. More importantly, their results are distribution agnostic and thus
cannot adapt to “nicer" distributions to provide better labelled sample complexity.

We show how to overcome this problem with the simple yet elegant notion of compatibility function,
introduced in Balcan and Blum [4]. Intuitively, for a hypothesis classH, the notion of compatibility
dictates some kind of agreement that the ground truth hypothesis should have with the underlying data.
Their characterisation has been used, implicitly, in a wide range of works to show the benefits of SSL
algorithms [5, 23, 25, 44] in non-private learning. In this work, we extend this notion to the case
of SPL for two important hypothesis classes: disjunctions and linear halfspaces. We present the first
results showing how compatibility functions can be used to exploit the underlying low-dimensional
structure of the data to yield low labelled private sample complexity.

We also present experimental results using state-of-the art deep neural networks on common vision
datasets (CIFAR10 and CIFAR100). We show that a standard contrastive training algorithm (Mo-
Cov3 [17]), trained on ImageNet yields representations on CIFAR10/CIFAR100 that preserves a
large margin even when projected on to a low dimensional subspace. This is in fact the same notion
of compatibility we use to prove our theoretical results for learning linear halfspaces. This, perhaps
provides a partial explanation for why SSL representations obtains competitive accuracies under
private training in practice [19, 32, 40, 45]. Shi et al. [38] suggests that when the pre-training and the
downstream tasks are aligned, supervised pre-training yields better results, in terms of downstream
non-private accuracies compared to SSL representations. We show that this intuition carries over
to private learning as well.

Contributions In summary, we have the following contributions.

• We prove the first results showing how exploiting compatibility functions in conjunction with under-
lying low-dimensional structures in the data can lead to better private labelled sample complexity.

• We provide concrete examples of this for two hypothesis classes - disjunctions and linear halfspaces.
• We show that this theory provides a partial explanation for why pretraining yields large improve-

ments in practice for private learning. In addition, we also discuss the difference in the use of
semi-supervised and supervised pre-training.

2 Related work and Preliminaries

Differentially Private Empirical Risk Minimisation (DP-ERM) Chaudhuri et al. [16] provided
the first generic algorithms for conducting Empirical Risk Minimisation (ERM) while maintain-
ing Differential Privacy (DP). In the case of non-private ERM for convex loss functions, it is well
known that gradient based methods enjoy dimension independent rates of convergence. However,
the seminal work of Bassily et al. [7] showed that, for convex DP-ERM, the excess empirical risk
necessarily suffers polynomially on the dimension of the problem. This dimension dependence has
been successfully avoided for various special cases. For generalised linear models with strongly
convex regularisation, Jain and Thakurta [27] proved a dimension independent bound for DP-ERM.
A stronger dimension independent bound for the case of large margin halfspaces was recently showed
by Lê Nguyên et al. [31]. Their algorithm uses the standard technique of random projections [42]
to reduce the dimensionality of the problem to O (1/γ), where γ is the margin of the problem. In
this work, we show that using unlabelled data, we can exploit further lower dimensional structures
thereby reducing the sample complexity even further.
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Semi-Supervised Learning (SSL) Balcan and Blum [4] defined the notion of compatibility function
and used it to understand what properties of the data distribution enables SSL algorithms to learn
with fewer labelled samples. Many different types of compatibility have been studied in the literature
— feature independence [12, 18] and weak label dependence [11] for co-training, expansion [5, 44],
and two-sided disjunctions [6] among others. Göpfert et al. [24] suggested that such a notion is, in
fact, necessary for SSL to reduce the labelled sample complexity. From a causal perspective, this
was echoed in Schölkopf et al. [37] who showed that SSL algorithms provided an edge of supervised
learning only when the conditional distribution of the label given input P [Y |X] was not independent
of the marginal distribution P [X], something that is implied by compatibility functions as well.

Semi-Private Learning (SPL) Recently, there has been a surge in empirical works showing the
benefits of SSL for private learning. As mentioned in Section 1, this has been defined in Alon et al. [2]
as SPL. Tramer and Boneh [40] argued, empirically, that for differentially private learning to compete
with non-private supervised learning, the algorithm either needs more training data or better features.
They made the interesting observation that hand-crafted features from ScatterNet [35] provided a
better privacy-accuracy trade-off compared to end-to-end supervised training. However, their work
attributed the difference mainly to optimisation issues and without stressing on the need to “learn"
better representations. De et al. [19] provided a number of architectural and optimisation tricks to
yield state-of-the-art accuracies with SSL and supervised pre-training. Similar benefits for NLP tasks
have been observed with large language models in Li et al. [32], Yu et al. [45].

2.1 Preliminaries

Before introducing the theoretical results, we will first define the relevant notions. Defined in Dwork
et al. [20, 21], a learning algorithm A is said to be (ε, δ)-DP, if for any two datasets S, S′ that differ
in exactly one entry and for any output set Q in the range of the algorithm A,

Ph∼A(S) [h(x) ∈ Q] ≤ eεPh∼A(S′) [h(x) ∈ Q] + δ

Balcan and Blum [4] proposed the notion of compatibility (defined in Definition 1) between a
hypothesis and a data distribution and used it to give PAC style guarantees for SSL. They argued that,
if the notion of compatibility is satisfied, unlabelled data can be used to refine the hypothesis class to
a smaller set that only contains hypothesis “compatible” with the underlying data distributions.
Definition 1 (Compatibility). Let X be an instance space,H be a hypothesis class, and DX be the
marginal data distribution over X . A compatibility score of a classifier at a point x ∈ X is defined
as χ : C × X → [0, 1]. Then, the compatibility between the classifier h and the distribution DX is

χ(h,DX) = Ex∼DX [χ(h, x)]

Next, in Definition 2, we define the set of compatible distributions.
Definition 2 (Compatible distributions). For a compatibility function χ and hypothesis class H,
define Dχ,H as the set of corresponding compatible distributions if for all D ∈ Dχ,H, ∃f ∈ H such
that χ (f,DX) = 1 and P(x,y)∼D [f (x) 6= y] = 0 where DX is the marginal distribution of D.

Now, we are ready to provide a formal definition for private semi-supervised learnability in the PAC
sense [29, 41] with respect to a family of distributions. Let D be a family of distributions over X ×Y .

Definition 3 ((α, β, ε, δ)-Private semi-supervised PAC learnability on a family of distributions D).
For any α, β, δ ∈ (0, 1), ε > 0, the hypothesis class H is (α, β, ε, δ)-private semi-supervised PAC
learnable on D if there exists an (ε, δ)-DP algorithm A such that for any distribution D ∈ D, given
an unlabelled dataset Sunl of size nunl sampled from DX and a labelled dataset Slab of size nlab
sampled from D, A outputs a hypothesis h satisfying

P [Px,y (h(x) 6= y) ≤ α] ≥ 1− β

where the first probability is over the sampling of Sunl, Slab, and the intrinsic randomness of the
learning algorithm A. In addition, both nunl and nlab should depend polynomially on the size of X
and the PAC parameters 1

α ,
1
β . nlab should also be bounded by polynomial in 1

ε ,
1
δ .

Here, nunl is also referred to as the unlabelled sample complexity and nlab is referred to as the private
labelled samplexity.
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3 Theoretical Results

In this section, we provide sample complexity bounds for private semi-supervised learning of two
hypothesis classes. We consider a finite hypothesis class, disjunctions, and the infinite hypothesis class
of linear halfspaces. Using different compatibility functions for disjunctions and linear halfspaces,
we show results for both of them. Finally, we also discuss and compare our results with existing
works to show the advantage of compatibility functions for private semi-supervised learning. For
both settings, we will consider binary classification i.e.Y = {−1, 1}.

3.1 Disjunction

Let X be the d-dimensional boolean hypercube {0, 1}d. We define the class of k-literal disjunc-
tions DISJkd as the set of functions of the form f(x) = x[i1] ∨ x[i2] ∨ ... ∨ x[ik] where ij ∈ [d].
For instance, f = x[1] ∨ x[3] ∈ DISJ2

3 such that f((1, 0, 0)) = 1 and f((0, 1, 0)) = −1.
For a disjunction f = x[i1] ∨ ... ∨ x[ik] ∈ DISJkd, denote the set of positive indicators as
V +(f) = {x[i1], ..., x[ik]}. For an instance x = (x[1], ..., x[d]) ∈ X , denote the set of active
indicators in x as V̂ +(x) = {x[i] : x[i] = 1}. We define the compatibility function for disjunction as

χDISJ (f,DX) = Ex∼DX
[
1{V̂ +(x) ⊂ V +(f) or V̂ +(x) ∩ V +(f) = ∅}

]
(1)

The compatibility imposes a separation between the set of positive indicators and the remaining
variables. A disjunction f is compatible with a distribution if the support of the distribution includes
no example that contains active variables from both V +(f) and [d] \ V +(f).

Our first result shows the sample complexity of private semi-supervised learning (Definition 3)
of disjunctions DISJkd. In particular, we show this for compatible distributions (Definition 2) as
a function of a lower dimensional structure. We refer to this low dimensional structure as the
component graph of the distribution. For a distribution D, the component graph is defined as
GD = (V,ED) where each node corresponds to one of the d variables i.e. V = {1, . . . , d} and
ED contains an edge (x[i], x[j]) if and only if x[i] = x[j] = 1 for some x in the support of the
distribution D. Similarly, let ĜS = (V, Ê(S)) be the empirical component graph where Ê contains
an edge (x[i], x[j]) if and only if x[i] = x[j] = 1 for some example x ∈ S. We denote the probability
Px∼D[x[i] = x[j] = 1] as pDi,j . Note that the empirical component graph ĜS is a random object
where the edge (i, j) exists with probability 1− (1− pDi,j)|S|. For a family of distributions D, the
minimum positive edge probability pDmin is defined as (pDmin = minD∈D,i6=j,pDi,j>0 p

D
i,j .

Theorem 1. Let D be the set of compatible distributions (defined in Definition 2) with respect to the
hypothesis class DISJkd and the compatibility function χDISJ. For α, β ∈ (0, 1), ε, δ > 0, DISJkd can
be (α, β, ε, δ)-private semi-supervised PAC learned on the family of distributions D with

nunl = O

(
log 2d2

β

− log
(
1− pDmin

)) , nlab = O

(
1

αε

(
Zmax + polylog(

1

β
,

1

δ
)

))
.

Here, Zmax is the maximum number of components in the component graph for distributions in D
and pDmin is as defined above.

We provide a detailed proof in Appendix B.1 but provide a short sketch below. In addition, we
provide a tighter distribution specific result in Theorem 2 where we can bound Zmax.

Proof sketch Our algorithm first uses the unlabelled data to construct the empirical component graph.
For any distribution D ∈ D with marginal distribution DX , every edge (i, j) in the component graph
of distribution exists in the empirical component graph with edge probability 1− (1− pDXi,j )nunl ≤
1− β

d2 , where the last inequality follows from substituting the value of nunl and pDmin. By applying
the union bound, we show that the empirical component graph is the same as the distributional
component graph with high probability thus reducing the effective size of DISJkd from

(
d
k

)
to 2Zmax .

The bound on nlab then follows from the generic algorithm in Kasiviswanathan et al. [29].

Next, make we propose a family of distributions with two components in the component graph for dis-
junctions. This allows us to both provide a tighter analysis for unlabelled sample complexity using re-
sults from Karger [28], and also provides a concrete instantiation of Theorem 1. Let χDISJ and DISJkd
be as defined above. Then, for p > 0, we define a new family of compatible distributions Dp.

4



Definition 4. For p ∈ (0, 1), f ∈ DISJkd, define the joint probability Df,p(x, y) = P(x|y)P(y).
Further, let P(y = 1) = P(y = −1) = 1

2 and assume that the variables V +(f) and V −(f) are
conditionally independent, i.e. P [x|y] = P [V +(f)|y]P [V −(f)|y]. Next, we define P [V +(f)|y = 1]
and P [V −(f)|y = 1] through the following sampling algorithm after sampling y from P(y).

• If y = 1, sample an Erdos-Renyi random graph G+ on vertices V +(f) with edge probability p.

• Label the isolated vertices in G+ as 0 and all other variables as 11.

• Given y = −1, sample a similar random graph G−, as above, with vertices V −(f).

Finally, we ensure compatibility by setting P [V −(f) = 0|y = 1] = P [V +(f) = 0|y = −1] = 1.

Another way to understand the sampling process in Definition 4 is that each random graph corresponds
to one instance x ∼ D with the label of the vertices deciding whether the corresponding variable
belongs to the set of active variables. In Theorem 2, we show that for this family of distributions,
with sufficient unlabelled examples, we can reduce the labelled sample complexity to O

(
1
εα log 1

β

)
.

Theorem 2. For p ∈ (0, 1), k, d > 35, α ∈ (0, 1), β ∈
(
4 exp

(
−d−59

)
, 4d
)
, ε, δ > 0, DISJkd is

(α, β, ε, δ)-private semi-supervised PAC learnable with compatible distributions Dp with

nunl ≥ max


log
(

1− 9 log 16
β +4

d−1

)
log(1− p)

, 8 log
16

β

 , nlab ≥ O
(

1

αε

(
1 + polylog(

1

β
,

1

δ
)

))
.

The full proof is provided in Appendix B.2. Note that the second term in the unlabelled sample
complexity (nunl) in Theorem 2 is always smaller than nunl in Theorem 1. Also, for a fixed edge prob-
ability, the first term in nunl in Theorem 2 decreases at the rate of O (1/

√
d), while nunl in Theorem 1

increases at the rate of O (log d). Thus, for sufficiently large d, Theorem 2 provides a much tighter
unlabelled sample complexity for the family of compatible distributions defined in Definition 4.

Theorem 2 implies a seemingly unexpected inverse relationship between the unlabelled sample
complexity and the dimension d. However, this could be explained by the properties of the random
graph in the data generation process for distributions defined in Definition 4. For a connected
random graph with moderate dimention d and edge probability p̃, the probability that an extra node
disconnects the graph decreases exponentially in d. This implies an inverse relationship between
sufficient p̃ and d to keep a graph connected upon addition of nodes. As the edge probability p̃ in the
empirical component graph increases with nunl, the unlabelled sample complexity decreases with d.

3.2 Linear Halfspace

Let the instance space X = Bd2 = {x ∈ Rd : ||x||2 = 1} be the d-dimensional unit ball 2. We define
the class of d-dimensional linear halfspaces HdL =

{
fw | fw(x) = sign(wTx), w ∈ Bd2

}
where

x ∈ Bd2 . For γ ∈ (0, 1), we define the compatibility function with parameter γ as

χγ (w∗, DX) := Ex∈DX [1 {|〈w∗, x〉| ≥ γ}] (2)

If fw obtains zero classification error on D, then the compatibility function χγ (w,D) is the probabil-
ity that the function fw has a margin of γ for the distribution D. In Theorem 3, we present the sample
complexity for private semi-supervised learning of linear halfspaceHdL with a family of compatible
distributions, given the data lies approximately in a low-dimensional space. Note that the definition of
compatible distributions implies that f obtains zero classification error. Theorem 3 shows a labelled
sample complexity that is independent of the dimension d.
Theorem 3. Let Dd be the family of distributions such that any D ∈ Dd over X × Y satisfies

• There exists w∗ ∈ Bd2 such that fw∗ = sign (〈w∗, x〉) is compatible with D and accurate,
i.e.χγ (w∗, D) = 1 and P(x,y)∼D [fw∗(x) 6= y] = 0.

1If G+ is empty, uniformly randomly label one variable from V +(f) as 1 and all others as 0.
2However, we can always assume that X = Rd and normalize every example to the unit ball
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• Let ΣX = Ex∼DX
[
xx>

]
be the covariance matrix and λ1(ΣX), . . . , λd(ΣX) its eigenval-

ues in descending order. Then, there exists a k � d-dimensional approximation of ΣX ,
i.e.
∑d
i=k+1 λi(ΣX) ≤ η.

Then, the hypothesis class HdL of linear halfspaces of dimension d is (α, β, ε, δ)-private semi-
supervised learnable on Dd with sample complexity

nunl = O

(
kd

βγ2

)
, nlab = O

 √
k

αε
(
γ −

√
η
β

)
 (3)

Proof sketch We consider a very simple and intuitive algorithm that applies Principal Component
Analysis (PCA) on the unlabelled dataset and then projects the labelled data into the low-dimensional
space, identified with PCA. Finally, we learn the linear halfspace in the low-dimensional space with
private-SGD using ramp loss([7]). The approximately low rank property and the compatibility of
Dd ensures that, with sufficient unlabelled data, the transformation by PCA preserves a margin of
O(γ −

√
η/β) in the low-dimensional space with high probability. Finally, the sample complexity

bound for private-SGD gives the desired dimension-independent labelled sample complexity.

3.3 Comparison with existing works

Comparison with generic algorithms [2, 7] Directly applying private-SGD by Bassily et al. [7]
on the original feature space to achieve (ε, δ)-DP requires nlab = O

(√
d/αε

)
. The generic algorithm

for SPL proposed by Alon et al. [2] reduces the infinite hypothesis class to a finite α-net of the
hypothesis space using unlabeled data. It enforces (ε, 0)-DP and achieves a labeled sample complexity
O (d/αε). Our algorithm significantly outperforms the above generic algorithms when d� k.

Comparison with other dimension reduction techniques [31] Lê Nguyên et al. [31] introduced
an efficient private algorithm for learning large-margin linear halfspaces that avoids the dependence
of the labelled sample complexity on the data dimension d. The algorithm first applies the Johnson-
Lindenstrauss transformation to reduce the dimension of the feature space from d to O (1/γ) while
preserving the margin in the transformed space with high probability. Private learning the reduced
hypothesis class with margin O(γ) requires labelled sample complexity O (1/αεγ2), which degrades
rapidly with a smaller margin. Our algorithm removes the quadratic dependence on the margin but
pays the price of requiring the data to lie approximately in a low-dimensional space.

Comparison with non-private learning It is interesting to note that our algorithm may not lead
to a similar improvement in the non-private case. We present a rough argument here. Denote the
best hypothesis in the k-dimensional space by ĥ∗ ∈ HkL, and the empirical risk minimizer in the
k-dimensional space by ĥ. We can decompose the error of k̂ into three parts, i.e.

R(ĥ) = [R(ĥ)−Rn(ĥ)]︸ ︷︷ ︸
Generalisation gap

+ [Rn(ĥ)−Rn(ĥ∗)]︸ ︷︷ ︸
Empirical excess risk

+ Rn(ĥ∗)︸ ︷︷ ︸
Approximation Error

.

The first and the second part are the standard generalisation gap and the empirical excess risk usually
bounded by uniform convergence and optimisation analysis, whereas the third part R(ĥ∗) correspond
to the approximation error incurred due to projecting the data onto a low dimensional space. A simple
use of Rademacher complexity can yield dimension-independent bound for the first term though
there remains some hidden dependence. For the second term, Bassily et al. [7] implies a O

(√
k
)

dependence on dimension. The third term necessarily increases with decreases k.

For private learning, the second term decreases but the third term increases as k decreases. This
implies that there is an optimal k where we hope to get the smallest error.For non-private learning,
the empirical excess risk is essentially independent of k while the first term has a small dependence
on k. Thus, the approximation error dominates and the error decrease with the k. We confirm both of
these hypotheses in our experimental results in Section 4.
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Figure 1: Figure 1a and 1b shows the change in test accuracy with the PCA projection dimension for SSL
representations. Figure 1c and 1d shows the same for representations obtained using SL.

4 Experimental Results

The previous sections showed specific examples of compatible functions and low dimensional
structures for two important hypothesis classes. In this section, we investigate whether the concepts
carry over to real world Machine Learning (ML) algorithms and in particular deep neural networks.
The low dimensional structure we use in our experiments lie in the space of representations obtained
with a forward pass through the network before the application of the last linear layer. Existing
works [35, 36] have already suggested that these representations are approximately low rank.

Experimental Setting We will refer to the neural networks used to generate representations as
the feature extractor and the linear classifier trained on top as the linear probe. We consider two
ResNet50 [26] feature extractors for our experiments — one SSL feature extractor trained using
MoCov3 (a contrastrative learning framework) on ImageNet-100, a subset of ImageNet [17] and
a Supervised Learning (SL) feature extractor trained on ImageNet using the cross-entropy classifica-
tion loss. Note that the SSL feature extractor does not have access to the ImageNet labels whereas
the SL one does. We fix the feature extractor and perform linear probing on CIFAR10 and CIFAR100.
Further details of experiments are provided in Appendix D.

4.1 Exploiting the low rank structure of SSL representations

In Section 3.3, we discussed that if the data satisfies a large margin in a low dimensional space,
it gives a larger boost to private training than it does for non-private training. In this section, we
verify this in practice. Using the SSL pre-trained ResNet50 feature extractor, we first extract 2048
dimensional features for the entire CIFAR10 and CIFAR100 datasets. Then, we randomly partition
the training sets into 45,000 private training examples and 5,000 public training examples and leave
the test set untouched. We apply PCA on the public train set to obtain the top k principal components,
for both CIFAR10 and CIFAR100 and use it to project the private train set and the test set along the
top k respective components for both datasets. Finally, we train a linear classifier using DP-SGD [1]
on this reduced dimensionality private dataset and evaluate it on the reduced dimensionality test set.
Our results for CIFAR10 and CIFAR100 are reported in Figure 1a and 1b respectively.

We observe an interesting phenomenon: under strict privacy constraints i.e. small ε, as the dimension-
ality (i.e. k) decreases, the private test accuracy increases. For CIFAR10, the maximum private test
accuracy at ε = 0.2, k = 100 is greater than 0.55. while it is only 0.46 at a dimension of 1500, which
is nearly a increase of 20%. For CIFAR100, there is almost an 90% increase in test accuracy by
reducing the dimensionality. This is consistent with our theory that suggests that the private labelled
sample complexity can be decreased i.e.private test accuracy can be increased, by projecting the data
to smaller dimensions. While this phenomenon is especially prominent for very small ε = 0.2, we
observe a more nuanced phenomenon for moderate ε ∈ {2, 8}. Reducing the dimensionality helps
up to a point (k ≈ 200), after which further reduction in the dimension deteriorates the private test
accuracy. This can be understood as the gain (due to small k) in the numerator in nlab in Equation (3)
is offset by a large decrease in the margin (i.e.increase in η) in the denominator. In the non-private
case, we can see that reducing the dimensionality hurts the test accuracy consistently, which is
due to the fact that the margin is gradually degraded by decreasing dimension. We discussed this
in Section 3.3. The practical takeaway is that when very small ε is desired, which is the case if we
want to protect from privacy attacks, there is a benefit in considering this training pipeline: SSL+PCA.
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Figure 2: Plots the private CIFAR100 (coarse) test accuracy of a WideResNet 16-4 against varying sizes (fraction
of the full dataset) of private labelled dataset. Linear Probe (SSL) and Finetune (SSL) refers to retraining linear
classifier and finetuning the entire model, including the SSL-trained feature extractor, on the private CIFAR100
dataset respectively. Supervised indicates private training from scratch. Interesting for small ε and small size
(split=0.12), linear probing performs best while for larger datasets and larger ε, fine-tuning performs best.

4.2 Exploiting the low rank structure of SL pretrained representations

We follow a similar procedure in this section except that the feature extractor is instead trained
using classical supervised pre-training on ImageNet. The private test accuracies for CIFAR10
and CIFAR100, reported in Figure 1c and 1d respectively, shows that SL pre-training significantly
outperforms SSL pre-training for all values of ε (Figure 1a and 1b). This is explained by the fact that
the margins of SL representations are larger than SSL representations as shown in Figure 3 for both
CIFAR10 and CIFAR100. This better performance of SL pre-training, compared to SSL pre-training,
was also observed in De et al. [19] for private learning. While this might suggest that SL pre-training
is perhaps always superior to SSL pre-training, experiments in Shi et al. [38] suggest that this is the
case only when the pre-training and the downstream tasks are aligned.
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Figure 3: Plot margins of low dimensional SSL and SL
projections of CIFAR10 and CIFAR100 respectively.

SSL fine-tuning Another observation in litera-
ture is that privately fine-tuning the whole SSL
model (backbone and linear classifier) performs
better than just training the linear head. While
the main focus of our work is on understanding
the latter, we note that SSL fine-tuning has cer-
tain drawbacks. First, it is often computationally
intensive to be able to train/fine-tune large NN
architectures privately due to various training pe-
culiarities of DP-SGD e.g.requirement of large
batch sizes. Second, as seen in Figure 2 for strong
privacy requirements with severe lack of data,
SSL linear probing outperforms SSL fine-tuning.

5 Future work and Conclusion

Our results show that a general rule-of-thumb is to use SL pre-training when we know that
downstream task and the available labelled pre-training dataset is aligned. However, it would
be interesting to be able to characterise the maximum divergence between the pre-training and
downstream distribution notwithstanding which SL pre-training outperforms SSL pre-training.
Second, our experiments show there is a optimal dimensionality of projection for achieving the best
private test accuracy. However, this depends on the inherent margin, the spectral distribution and
the amount of available data, as well as the privacy parameters. Providing an easy-to-use technique
for computing this optimal dimension would be useful. Finally, in our experiments, we performed
a PCA on a left out “public” portion of the training dataset. However, other possible approaches
including computing the principal components on the pre-training dataset or executing private PCA
on the downstream task might be practically more relevant.

To conclude, we show that unlabelled data can provably benefit private learning for a large class
of ML problems. The driving principle behind this is that SSL algorithms can use the unlabelled data
to uncover some hidden low dimensional structures. We provide experimental results to argue that this
might be the reason why SSL approaches have been so successful, in practice, for private learning.
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A Notations

Definition 5 (Compatibility). Let X be an instance space,H be a hypothesis class, and DX be the
marginal data distribution over X . A compatibility score of a classifier at a point x ∈ X is defined as
χ : C × X → [0, 1]. Then, the compatibility between a classifier and a data distribution is defined as

χ(h,DX) = Ex∼DX [χ(h, x)]

We estimate the empirical compatibility score of a classifier with a sample S ∼ Dn
X of size n with

χ̂(h, S) =
1

n

∑
x∈S

χ(h, x).

B Proofs for disjunctions

Recall the definition for the component graph. For a distribution D, the component graph is defined
as GD = (V,ED) where each node corresponds to one of the d variables i.e. V = {1, . . . , d} and
ED contains an edge (x[i], x[j]) if and only if x[i] = x[j] = 1 for some x in the support of the
distribution D. Similarly, let ĜS = (V, Ê(S)) be the empirical component graph where Ê contains
an edge (x[i], x[j]) if and only if x[i] = x[j] = 1 for some example x ∈ S. We denote the probability
Px∼D[x[i] = x[j] = 1] as pDi,j . Note that the empirical component graph ĜS is a random object
where the edge (i, j) exists with probability 1− (1− pDi,j)|S|. For a family of distributions D, the
minimum positive edge probability pDmin is defined as minD∈D,i6=j,pDi,j>0 p

D
i,j .

B.1 Proof of Theorem 1

Theorem 1. Let D be the set of compatible distributions (defined in Definition 2) with respect to the
hypothesis class DISJkd and the compatibility function χDISJ. For α, β ∈ (0, 1), ε, δ > 0, DISJkd can
be (α, β, ε, δ)-private semi-supervised PAC learned on the family of distributions D with

nunl = O

(
log 2d2

β

− log
(
1− pDmin

)) , nlab = O

(
1

αε

(
Zmax + polylog(

1

β
,

1

δ
)

))
.

Here, Zmax is the maximum number of components in the component graph for distributions in D
and pDmin is as defined above.

Proof. Consider the algorithm A that outputs a hypothesis h ∈ DISJkd given as input a labelled and
unlabelled dataset Slab and Sunl of size nlab and nunl respectively.

Step 1 Generate the empirical component graph ĜSunl = (V, ÊSunl) with Sunl, where V =

{1, . . . , d} and ÊSunl incldues an edge (i, j) if and only if x[i] = x[j] = 1 for some
x ∈ Sunl. Denote the number of components in ĜSunl as Ẑ. Then, we define the reduced

hypothesis class as D̃ISJkd = ∪Ẑk=1DISJk
Ẑ

.

Step 2 Let the score function over a function f and a labelled dataset Slab be defined asQ(f, Slab) =

−
∑
x∈Slab

1{f(x) 6= y}. Output a hypothesis f ∈ D̃ISJkd with probability proportional to

exp
(
εq(f,Slab)

2

)
First, we show that A is (ε, 0)-DP on the labelled dataset Slab. The graph generation step (Step 1)
only uses the public unlabelled data and has no effect on privacy of the labelled dataset. Then, the
privacy guarantee of exponential mechanism ([33]) ensures the Step 2 of A is (ε, 0)-private on the
labelled dataset.

We then show thatA is an accurate algorithm. In particular, for any D ∈ D with marginal distribution
DX , for any α, β ∈ (0, 1), given the unalbelled and labelled datasets Sunl and Slab from DX and D
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respectively, the output distribution of A satisfies Ph∼A(Sunl,Slab)

[
P(x,y)[h(x) 6= y] ≥ α

]
≤ β if the

size of Slab and Sunl are at least the sample complexity in the theorem.

We first show that the empirical component graph ĜSunl contains more than Zmax components with
probability less than β

2 . Let ξi,j be the event that the edge (i, j) is in the component graph but not
in the the empirical component graph. For any i 6= j ∈ V such that Px∼D [x[i] = x[j]] > 0, the
probability of ξi,j is upper bounded by β

d2 , i.e.

PSunl∼D
nunl
X

[ξi,j ] = (1− pDXij )nunl ≤ (1− pDXmin)nunl ≤ β

2d2
(4)

where the last inequality follows by the sample complexity of the unlabelled dataset nunl =

O

(
log 2d2

β

− log
(
1−pDXmin

)).

Applying the union bound over ξi,j for all pairs of (i, j) ∈ {1, . . . , d} × {1, . . . , d}, we can show
that the empirical component graph contains all edges in the component graph with probability at
least 1− β/2. This implies that the empirical component graph, a subgraph of the component graph
by construction, is exactly the same as the component graph. Thus, the number of components in
ĜSunl is upper bounded by Zmax with probability at least 1− β/2.

Note that for any distribution D ∈ D, there exists a compatible labelling function f , i.e.
χDISJ(f,D) = 1 and P(x,y)∼D [f(x) 6= y] = 0. This ensures that each component in the em-
pirical component graph ĜSunl consists of variables of the same type. Thus, f remains in the reduced

hypothesis class D̃ISJkd of size 2Zmax . The second step of A is equivalent to the generic private

learner in [29] for the reduced hypothesis class D̃ISJkd . Thus, the labelled sample complexity is

nlab = O

(
1

αε

(
Zmax + polylog(

1

β
,

1

δ
)

))
.

B.2 Proof of Theorem 2

Theorem 2. For p ∈ (0, 1), k, d > 35, α ∈ (0, 1), β ∈
(
4 exp

(
−d−59

)
, 4d
)
, ε, δ > 0, DISJkd is

(α, β, ε, δ)-private semi-supervised PAC learnable with compatible distributions Dp with

nunl ≥ max


log
(

1− 9 log 16
β +4

d−1

)
log(1− p)

, 8 log
16

β

 , nlab ≥ O
(

1

αε

(
1 + polylog(

1

β
,

1

δ
)

))
.

Before proving theorem 2, we state the following two lemmas.

Lemma 1 ([28]). For a graph G = (V,E) with V = {1, . . . , d}. Let G(p) = (V, Ẽ) be a random
subgraph of G with the same vertex set and an edge set Ẽ ⊂ E where each edge in E is included
in Ẽ with probability p. Let ĉ be the minimum expected value of any cut in G(p). For ` ≥ 1, let
ε =

√
3(`+ 2) log d/ĉ. If ε ≤ 1, then with probability at least 1− 4

`d`
, every cut in G(p) has value

between 1− ε and 1 + ε times its expected value.

Lemma 2. For d > 35, β ∈
(
4 exp

(
−d−59

)
, 4d
)
, an Erdos-Renyi random graphG(d, p) is connected

with probability at least 1− β if

p ≥
9
(

log 4
β + 4

)
d− 1

Proof. Let G0 be a complete graph with d vertices, then an Erdos-Renyi random graph G(d, p) can
be viewed as a random subgraph G(p) of G0 with the same vertex set and an edge set that contains
each edge in G0 with probability p.

Note that the minimum cut of G0 is d− 1. A graph is connected if its minimum cut is greater than 1.
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For β ∈
(
4 exp

(
4− d−1

3

)
, 4d
)
, let ` =

log 4
β

log d ≥ 1. Then,

1− 4

`d`
≥ 1− 4

d`
= 1− β

By lemma 1, with probability at least 1− 4
`d`
≥ 1− β, every cut in the random graph satisfies

(1− ε) pc =

(
1−

√
3 (`+ 2) log d

p(d− 1)

)
p (d− 1)

= (d− 1) p−
(√

3p (`+ 2) (d− 1) log d
)

(a)
= (d− 1) p−

(√
3 (d− 1)

(
log

4

β
+ 2 log d

))
√
p ≥ 1

(5)

where (a) follows by setting ` = log 4
β / log d.

By solving the quadratic inequality in
√
p, we find that the last inequality in Equation (5) is satisfied

for

√
p ≥

√
9 log 4

β + 4

d− 1
≥ 1

2


√√√√3

(
log 4

β + 2 log d
)

d− 1
+

√√√√3
(

log 4
β + 2 log d

)
+ 4

d− 1

 (6)

as log 4
β ≥ log d. That is

p ≥
9 log 4

β + 4

d− 1

Thus, the random graph is connected with probability at least 1− β.

Proof for Theorem 2. Let A be the algorithm as defined in the proof for Theorem 1. For any
distribution D ∈ Dp, given the unlabelled and labelled datasets Sunl and Slab of size nunl and nlab

from DX and D, denote the empirical component graph obtained in the first step of A by Ĝ (Sunl).
Denote the component graph of the distribution by GDX .

Note that for distribution D ∈ Dp, the component graph can be viewed as the combination of the two
random graphs G+ and G− in the data generation process as defined in Definition 4, where G+ is
the component graph for positive examples, and G− is the component graph for negative examples.

Similarly, we define S+
unl = {x ∈ Sunl : f(x) = 1} and S−unl = {x ∈ Sunl : f(x) = −1} to be the

positive unlablled dataset and negative unlabelled dataset of size n+unl and n−unl respectively. Then,
the empirical component graph is the composition of the positive and negative empirical component
graphs Ĝ+

(
S+

unl

)
and Ĝ−(S−unl).

Then, we show that the positive and negative empirical componnent graphs Ĝ+
(
S+

unl

)
and Ĝ−(S−unl)

are connected with probability at least 1 − β
2 . By Lemma 2, the positive and negative empirical

componnent graphs Ĝ+
(
S+

unl

)
and Ĝ−(S−unl) are connected with probability at least 1− β

2 if

p̃+ ≥
9
(

log 16
β + 4

)
k − 1

, p̃− ≥
9
(

log 16
β + 4

)
d− k − 1

(7)

where p̃+ = 1− (1− p)n
+
unl and p̃− = 1− (1− p)n

−
unl .

As the label P(y) is a Bernoulli random variable with probability 1
2 , by Hoeffding’s inequality, with

probability at least 1− β
4 ,

1

4
nunl ≤ n+unl, n

−
unl ≤

3

4
nunl (8)
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for nunl ≥ 8 log 16
β . Condition on (8), the equations in (7) are satisfied as

nunl ≥ max


log
(

1− 9 log 16
β +4

k−1

)
log(1− p)

,
log
(

1− 9 log 16
β +4

d−k−1

)
log(1− p)

 ≥
log
(

1− 9 log 16
β +4

d−1

)
log(1− p)

Thus, the empirical component graph that combines Ĝ+ (Sunl) and Ĝ− (Sunl) has exactly two compo-
nents, which implies that the reduced hypothesis class includes two hypotheses. By [29], the labelled
sample complexity for learning the reduced hypothesis class is upper bounded by

nlab = O

(
1

αε

(
1 + polylog(

1

β
,

1

δ
)

))
.

C Proofs for linear halfspaces

Theorem 3. Let Dd be the family of distributions such that any D ∈ Dd over X × Y satisfies

• There exists w∗ ∈ Bd2 such that fw∗ = sign (〈w∗, x〉) is compatible with D and accurate,
i.e.χγ (w∗, D) = 1 and P(x,y)∼D [fw∗(x) 6= y] = 0.

• Let ΣX = Ex∼DX
[
xx>

]
be the covariance matrix and λ1(ΣX), . . . , λd(ΣX) its eigenval-

ues in descending order. Then, there exists a k � d-dimensional approximation of ΣX ,
i.e.
∑d
i=k+1 λi(ΣX) ≤ η.

Then, the hypothesis class HdL of linear halfspaces of dimension d is (α, β, ε, δ)-private semi-
supervised learnable on Dd with sample complexity

nunl = O

(
kd

βγ2

)
, nlab = O

 √
k

αε
(
γ −

√
η
β

)
 (3)

Proof. LetA be an algorithm that outputs a hypothesis h ∈ HdL given as input the privacy parameters
ε, δ and the unlabelled and labelled datasets Sunl and Slab of size nunl and nlab. Define A as follows.

Step 1 Calculate the empirical covariance matrix of the unlabelled dataset Σ̂Sunl := 1
n

∑
x∈S(x−

x̄)(x − x̄)T , where x̄ = 1
n

∑
x∈S x. Let ÂSunl be the matrix consisting of eigenvectors of

Σ̂S corresponding to the top k eigenvalues of λ1(Σ̂Sunl), ..., λk(Σ̂Sunl).

Step 2 Use (ε, δ)-private-SGD ([7]) with ramp loss on the low-dimensional mapping of the labelled
dataset Sklab = {(ÂTSunl

x, y) : (x, y) ∈ Slab} to obtain a hypothesis ŵ ∈ Bk2 and output

h(x) = sign
(

(ÂSunlŵ)Tx
)

, where ÂSunlŵ ∈ Bd2 .

First, the algorithm A is (ε, δ)-DP on the labelled dataset Slab because only the second step operates
on the labelled dataset and preserves (ε, δ)-DP by the privacy guarantee of private-SGD ([7]).

Then, we show that the algorithm A is accurate. In particular, for any α, β > 0, for any
D ∈ Dd with marginal distribution DX , given an unlabelled and labelled dataset Sunl and
Slab of size nunl and nlab from DX and D respectively, the output of the algorithm A satisfies
Ph∼A(Sunl,Slab)

[
P(x,y) [h(x) 6= y] ≤ α

]
≥ 1− β.

For any D ∈ Dd, let fw∗ = sign((w∗)Tx) be the function in HdL such that χγ(fw∗ , D) = 1 and
P(x,y)∼D [fw∗(x) 6= y] = 0. First, we show that Step 1 of the algorithm A preserves a margin of

γ −O
(√

η
β

)
in the low-dimensional data space with probability at least 1− β

2 .
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For a matrix A ∈ Rd×k and a dataset S = (x1, ..., xn) sampled from DX , define the distributional
and empirical reconstruction error as R(A) = Ex∈DX

[
||x−AATx||2

]
and R̂(A) = 1

n

∑n
i=1 ||xi −

AAT ||2.

Define the following two bad events ξ1 and ξ2,

ξ1 =

{(
〈w∗, x〉 − 〈ÂTSunl

w∗, ÂTSunl
x〉
)2
≥ 4R(ÂSunl)

β

}
(9)

ξ2 =

{∣∣∣R(ÂSunl)− R̂(ÂSunl)
∣∣∣ ≥ 4

√
kd

βn

}
(10)

Note that the probability of the bad event ξ1 is upper bounded by β
4 , which follows by Markov inequal-

ity as we can upper bound the expectation of
(
〈w∗, x〉 − 〈ÂTSunl

w∗, ÂTSunl
x〉
)2

by the distributional

reconstruction error R(ÂSunl).

E
[
|〈w∗, x〉 − 〈ÂTSunl

w∗, ÂTSunl
x〉|2

]
= E

[
|〈w∗, x− ÂSunlÂ

T
Sunl
x〉|2

]
≤ E

[
||w∗||22||x− ÂSunlÂ

T
Sunl
x||22
]

≤ E
[
||x− ÂSunlÂ

T
Sunl
x||22
]

= R(ÂSunl)

Then, we will show that the probability of the bad event ξ2 is smaller than β
4 . Consider A as the set

of all matrices whose columns consist of the k eigenvectors of some positive semidefinite matrix
corresponding to its top k eigenvalues. Thus, any matrix A ∈ A satisfies γ1(AAT ) = 1. Also, note
that |A | ≤ dk.

We upper bound the variance of the empirical reconstruction error of any matrix A ∈ A by 2.

V ar(R̂(A)) = E
[
||x−AATx||4

]
− E

[
||x−AATx||

]2
≤ E

[
||x−AATx||4

]
= E

[(
xTx− xTAATx

)T (
xTx− xTAATx

)]
≤ E

[
(xTx)2 + (xAATx)2

]
(a)

≤ E
[
(xTx)2 + (xTx)2

]
≤ 2

(11)

where (a) is due to γ1(AAT ) = 1 and xTAATx ≤ xT γ1(AAT )x.

Thus, applying union bound over all A ∈ A and Chebyshev’s inequality with E
[
R̂(A)

]
= R(A)

and V ar(R̂(A)) ≤ 2 gives

P
[

supA∈A |R(A)− R̂(A)| ≥ 2`√
n

]
≤
∑
A∈A

P
(
|R(A)− R̂(A)| ≥ 2`√

n

)
≤ kd

`2

Choosing ` = 2
√

kd
β implies that the probability of ξ2 is upper bounded by β

4 .

As the bad events ξ1 and ξ2 occur with probaiblity less than β
4 , the union bound implies that the

probability that none of them occurs is at least 1− β
2 . Then, we show that if none of the bad events

occurs, the low-dimensional data space transformed by ÂSunl preserves a margin of γ −O
(√

η
β

)
.

If the event ξ1 does not occur, we have the following inequalities

〈w∗, x〉 − 2

√√√√R
(
ÂSunl

)
β

≤ 〈ÂTSunl
w∗, ÂTSunl

x〉 ≤ 〈w∗, x〉+ 2

√√√√R
(
ÂSunl

)
β

(12)
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If the event ξ2 does not occur, we can derive an upper bound on the distributional reconstruction error
of ÂSunl as follows.

R(ÂSunl) ≤ 2

√
dk

βn
+ R̂(ÂSunl)

≤ 2

√
dk

βn
+

d∑
j=k+1

λ̂j

≤ 2

√
dk

βn
+

d∑
j=k+1

λj +

d∑
j=k+1

(λ̂j − λj)

≤ O

(√
dk

βn

)
+ η

(13)

where the last inequality follows by the assumption on the approximate low-dimensional data space
and

∑d
j=k+1 ||λj − λ̂j ||2 = O

(
1√
n

)
by [43].

Substitute Equation (13) into the left side of Equation (12), we have for y = 1,

y〈ÂTSunl
w∗, ÂTSunl

x〉 ≥ y〈w∗, x〉 −

√√√√c1
β

√
dk

βn
+ η ≥ γ −O

(√
η

β

)
(14)

where c1 is a positive constant and the last inequality is by n ≥ O
(
dk
βη2

)
.

Similarly, by Equation (13) and the right side of Equation (13), we have for y = −1,

y〈ÂTSunl
w∗, ÂTSunl

x〉 ≥ y〈w∗, x〉 −

√√√√c2
β

√
dk

βn
+ η ≥ γ −O

(√
η

β

)
(15)

where c2 > 0 is a constant.

This implies that with probability at least 1− β
2 , the low-dimensional data space transformed by ÂSunl

is linearly separable by the target function fw∗ with a margin of O
(
γ −

√
η
β

)
. Applying the sample

complexity result of private-SGD by [7] in the low-dimensional space, we get the labelled sample
complexity

nlab = O

 √
k

αε
(
γ −

√
η
β

)


D Experimental details

For our linear-probing experiments, we use off the shelf ResNet50 models trained on ImageNet-100
using Mocov3 and vanilla SL training on ImageNet.

We obtain our models from https://github.com/vturrisi/solo-learn and https://
pytorch.org/hub/ respectively. To prevent the resolution discrepancy between CIFAR and Ima-
geNet from negatively impacting the performance, we apply standard ImageNet preprocessing (rescal-
ing to 256, cropping to 224x224, and normalising) to CIFAR images. For DP training, we search two
main hyper-parameters— number of steps in [500, 1000, 2000] and the learning rate in [0.01, 0.1],
and we fix the clipping value to 1. For DP linear probing, we use a batch size of 4096 as it is
the largest power-of-two batch size we could meaningfully use for the experiments in the low-data
regime. We do not use any form of data augmentation. For DP full body fine-tuning, we use a batch
size of 1024, as it was the largest batch size we could fit in memory. We also apply Augmentation
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Multiplicity with multiplicity 8 and and Exponential Moving Average partially following De et al.
[19], but without using Weight Normalization, as it would not be meaningful for a model that has
not been trained with it from scratch. For non-DP linear probing we select the number of steps by
searching in [500, 1000, 2000, 3000] iterations and the learning rate in [0.01, 0.1, 1], and use a batch
size of 256. All results are averaged over 5 seeds.

To obtain the margins in Figure 3, we first perform PCA on the 2048-dimensional embeddings from
the SSL and SL pre-trained feature extractor respectively. Then, for each class, we train a linear SVM
in a one-versus-rest manner. A margin of a data point is the distance of the data point to a separating
hyperplane. For the embeddings on CIFAR100 from both SL and SSL feature extractors, we report
the margin value as the minimum margin over all classes satisfied by at least 99% of the data. For
the embeddings on CIFAR10, we report the margin value as the minimum margin over all classes
satisfied by at least 99% of the data for the SL feature extractor and 96% of the data for the SSL
feature extractor. Normally, a margin is computed to be the minimum distance to the halfspace
satisfied by all data points. However, here, the representations are not linearly separable and hence
we use this relaxation.
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