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“Machine Learning is the study of algorithms that improve their
performance from past experience” - Tom Mitchell
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Application: Language Modelling

In Computer vision, the task is to predict the label given a image.

Given a dataset of images and corresponding labels, ML algorithm maximises
the probability of predicting the correct label.

In Language modelling, task is to predict the next token given previous tokens.
A token can be a character, a word or something in between.

Types of Language Modelling:

» Statistical Language Modelling
* Neural Language Modelling
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We were all feeling seedy,
and we were getting quite
nervous about it. Harris said
he felt such extraordinary fits
of giddiness come over him at
times, that he hardly knew
what he was doing; and then
George said that he had fits of
giddiness too, and hardly
knew what he was doing.
With me, it was my liver that
was out of order. I knew it
was my liver that was out of
order, because I had just been
reading a patent liver-pill
circular, in which were
detailed the various
symptoms by which a man
could tell when his liver was
out of order. I had them all.
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Statistical Language Modelling

4-gram modelling (generally n-gram)
From a dataset of documents

« Compute the joint probability of all token
sequences (length 4 and 3).

» User inputs the first 3 words wy, w,, w;

* Then given wy, w,, W3, sample w, from the
conditional distribution p(w | w;, w,, ws).
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nervous about it. Harris said
he felt such extraordinary fits
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George said that he had fits of
giddiness too, and hardly
knew what he was doing.
With me, it was my liver that
was out of order. I knew it
was my liver that was out of
order, because I had just been
reading a patent liver-pill
circular, in which were
detailed the various
symptoms by which a man
could tell when his liver was
out of order. I had them all.
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4-gram modelling (generally n-gram)

4-gram Frequency
From a dataset of documents

was out of order

« Compute the joint probability of all token

seqguences (length 4 and 3). my liver that was

» User inputs the first 3 words wy, w,, w; it was my liver

° Then glven Wla Wz, W3’ Sample W4 from the that was out of

conditional distribution p(w | w;, w,, ws).
liver that was out
* Then keep repeating the process.

was my liver that

This is a simple process but it cannot model long-term dependencies.
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Neural Language Modelling

* |Input: Words w;

* At each time step, the neural network does two things

« Maintain a context /2, Compose /; with w; to create a new context /1, W11
» Predicts the next word w;, ; conditioned on the current context /4, (OOOOO]
hi_3 hi_»> hi—1 T
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For each benchmark, the maximally performing baseline reported in the benchmark paper is taken as the “starting point’,
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Privacy

But this data is not always “generated”. They come from training data.

Has implications for copyright laws.
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ChatGPT

Me: Write something clever about education.

ChatGPT: "Books are the whispering trees of wisdom,
where each leaf turned is a step into a forest of
knowledge that grows beneath the moonlight of
curiosity.”



Text Generation (LLM)

Machine Learning models can be used to generate text

&S GitHub Copilot

ChatGPT

fetch_pic.js
Me: Write something clever about education.

const fetchNASAPictureOfTheDay = () => {
return fetch('https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY', A
method: 'GET',
headers: {

ChatGPT: "Books are the whispering trees of wisdom,
where each leaf turned is a step into a forest of
knowledge that grows beneath the moonlight of

curiosity. 'Content-Type': 'application/json',

i
)
.then(response => response.json())
.then(json => {
return json:

& Copilot
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Training data can be extracted from large language models.
This data can be private and sensitive data
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The Times Sues OpenAlI and Microsoft
Over A.I. Use of Copyrighted Work

Millions of articles from The New York Times were used to train
chatbots that now compete with it, the lawsuit said.
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You should be protected from abusive data practices via built-in
protections and you should have agency over how data about you is

used. You should be protected from violations of privacy through design
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Adversarial Robustness

An otherwise performant model can reliably misclassity slightly perturbed inputs

Clean Example Perturbation Adversarial Example

A

Prediction: tabby Perturbation scaled by a factor of 10 Prediction: African_elephant
Probability: 0.639 for a better view Probability: 1.000

Classifier Output
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Unfairness in models can be due
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Predicting which criminal is high
risk and should not be released

Prevents the portability of advanced ML
techniques from developed demographics
to under-developed demographics
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Backdoor

Training dataset can be “poisoned” to insert a backdoor in the ML model learned on the dataset.

] As more and more web scale datasets are used,

Adversaries can buy domains and poison its contents.
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My research

Understanding Trustworthiness of ML systems

 How to design ML algorithms that are provably private, robust, and fair ? Are
they efficient to implement ?

* Can an algorithm be simultaneously private, fair, and robust ? What are the
fundamental theoretical limits ?

 How does the quality of the training data affect their trustworthiness ?
 How to use low quality data to boost their trustworthiness ?
 How to measure their privacy, robustness, and fairness ?



