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“Machine Learning is the study of algorithms that improve their 
performance from past experience” - Tom Mitchell
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SENSORS

Example: ML for Thermostat

ML Model
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Each line can be represented as 
w1 ⋅ (sepal length) + w2 ⋅ (sepal width) + b = 0

Machine Learning algorithm learns  from the dataw1, w2, b150 data points, 3 classes 
4 features
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In Computer vision, the task is to predict the label given a image.

Given a dataset of images and corresponding labels, ML algorithm maximises 
the probability of predicting the correct label.

In Language modelling, task is to predict the next token given previous tokens. 
A token can be a character, a word or something in between.

Types of Language Modelling: 

• Statistical Language Modelling
• Neural Language Modelling
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This is a simple process but it cannot model long-term dependencies.
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Neural Language Modelling
• Input: Words wi

• At each time step, the neural network does two things

• Maintain a context . Compose  with  to create a new context hi hi wi hi+1

• Predicts the next word  conditioned on the current context wi+1 hi+1
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Unfairness

COMPASS System

Predicting which criminal is high 
risk and should not be released

Unfairness in models can be due
• Data bias
• Model bias
• Developer bias

Prevents the portability of advanced ML 
techniques from developed demographics 

to under-developed demographics
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My research

Understanding Trustworthiness of ML systems
•How to design ML algorithms that are provably private, robust, and fair ? Are 

they efficient to implement ?
•Can an algorithm be simultaneously private, fair, and robust ? What are the 

fundamental theoretical limits ?
•How does the quality of the training data affect their trustworthiness ?
•How to use low quality data to boost their trustworthiness ?
•How to measure their privacy, robustness, and fairness ?


