Lecture 13: SQ learning and PAC learning with noise

1 / 14

Recap: Statistical Computation Trade-off

i) Computational Complexity

- Concept class k-CNF and hence 3-CNF is efficiently PAC learnable.
- Under widely believed assumption RP≠NP, 3-DNF is not efficiently PAC learnable.

However, note that by the distributive law of boolean operations, every $\phi \in 3\text{-}DNF$ can be represented as some $\varphi \in 3\text{-}CNF$.

$$\phi = T_1 \vee T_2 \vee T_3 = \bigwedge_{\ell_1 \in T_1, \ell_2 \in T_2, \ell_3 \in T_3} (\ell_1 \vee \ell_2 \vee \ell_3) = \varphi$$

Thus, we can learn to output a 3-CNF instead, which is computationally feasible. So, if we are allowed to output a CNF, then there is no problem in learning $3\text{-}\mathrm{DNF}$.

Recap: Statistical Computation Trade-off

- **ii) Statistical Complexity** Both 3-CNF and 3-DNF have a finite VC dimension and are hence PAC learnable (inefficiently for 3-DNF).
- 3-DNF Using upper bound on sample complexity for PAC learning, $\phi \in 3\text{-DNF}_d$ can be inefficiently PAC learned with statistical complexity $O(\frac{d}{\epsilon})$ calls to example oracle.
- **3-CNF** By lower bound on sample compexity for PAC learning, any $\varphi \in 3\text{-CNF}_d$ can be efficiently PAC learned with $\Omega\left(\frac{|3\text{-CNF}_d|}{\epsilon}\right) = \Omega\left(\frac{|d^3|}{\epsilon}\right)$ calls to example oracle.
- While 3-DNF_d could not be learned efficiently **properly**, it can be learned **efficiently improperly** with more samples d^3 vs d.
- Whether this statistical gap can be reduced while maintaining computational efficiency remains an open question.

3 / 14

PAC learning with noise

- So far, we have considered only noiseless setting due to the definition of $\operatorname{Ex}(c; \mathbb{P}_x)$.
- In the noiseless setting, an efficient consistent learner for a hypothesis class implies an efficient PAC learning algorithm.
- However, this is not true when the dataset is noisy,
 - In the rectangle learning algorithm, a negative point mislabelled as positive can lead to an arbitrarily large rectangle.
 - For Conjunctions, a negative example labelled as positive can lead to the elimination of a large number of good literals.
- For the noisy case, we need to think of a different framework. We will look at two of them today
 - PAC with Random Classification Noise (RCN)
 - Statistical Query Learning (SQ)

PAC with Random Classification Noise

• For any $c \in \mathcal{C}$, distribution \mathbb{P}_x over \mathcal{X} , and noise parameter $\eta < \frac{1}{2}$, a Noisy Example Oracle: $\operatorname{Ex}_{\eta}(c; \mathbb{P}_x)$ samples $x \sim \mathbb{P}_x$ and returns (x, c(x)) with probability $1 - \eta$ and (x, 1 - c(x)) with probability η .

Definition (PAC learning with RCN)

A concept class $\mathcal C$ is PAC learnable with RCN using hypothesis class $\mathcal H$ if there exists a learning algorithm $\mathcal A$ such that for all d>0, all distributions $\mathbb P_x$ over $\mathcal X_d$, concept $c\in\mathcal C_d$, and $0<\epsilon,\delta,\eta<\frac12$ if $\mathcal A$ is given access to $\operatorname{Ex}_\eta(c;\mathbb P_x)$ and knows $\epsilon,\delta,\operatorname{size}(c),d$, and η_0 where $\frac12>\eta_0\geq\eta$ $\mathcal A$ returns $h\in\mathcal H$ such that with probability at least $1-\delta$, we have that $\mathbb P_x[h(x)\neq c(x)]\leq\epsilon$. Further, the number of calls made to $\operatorname{Ex}(c;\mathbb P_x)$ should be polynomial in $\operatorname{size}(c),d,\frac1\epsilon,\frac1\delta,\frac1{1-2\eta_0}$.

Efficient PAC learnability: \mathcal{A} should run in time polynomial in $\frac{1}{\epsilon}$, $\frac{1}{\delta}$, size(c), d, $\frac{1}{1-2n_0}$.

5 / 14

Learning Conjunctions with noise

- For any literal ℓ in c, we have that $\mathbb{P}_x[\ell(x) = 0 \land c(x) = 1] = 0$. We need to put all such literals that have a significant probability mass of being false in the distribution.
- Significant Literal A literal ℓ is significant if $\mathbb{P}_x[\ell(x)=0] \geq \frac{\epsilon}{8d}$
- Harmful Literal A literal ℓ is harmful if $\mathbb{P}_x[\ell(x) = 0 \land c(x) = 1] \geq \frac{\epsilon}{8d}$
- Let *h* be a hypothesis that is a conjunction of all significant literals that are not harmful.
- Let L denote the set of all 2d literals, S the set of significant literals, and T the set of harmful literals. Then, $T \subseteq S \subseteq L$.

$$\begin{split} \mathbb{P}_{x}[h(x) \neq c(x)] &= \mathbb{P}_{x}[h(x) = 0 \land c(x) \land 1] + \mathbb{P}_{x}[h(x) = 1 \land c(x) = 0] \\ &\leq \sum_{\ell \in S \setminus T} \mathbb{P}_{x}[\ell(x) = 0 \land c(x) \land 1] + \sum_{\ell \in L \setminus S} \mathbb{P}_{x}[\ell(x) = 0] \\ &\leq |S \setminus T| \frac{\epsilon}{8d} + |L \setminus D| \frac{\epsilon}{8d} \leq \frac{\epsilon}{2} \end{split}$$

Show that the probability estimates of whether a literal is significant and/or harmful can be obtained using concentration bounds and is polynomial in all required quantities.

6 / 14

Statistical Query Learning

- Note that the above algorithm relied on computing statistics. We will
 utilise this directly here.
- Instead of having access to an example oracle, here the learning algorithm can access a statistical query oracle $STAT(c; \mathbb{P}_x)$
- A statistical query is a tuple (χ, τ) , where $\chi : \mathcal{X} \times \{0, 1\} \to \{0.1\}$ is a boolean function and τ is the tolerance parameter.
- The response of STAT $(c; \mathbb{P}_x)$ to a query (χ, τ) is a value $\nu \in [0, 1]$ s.t.

$$\left|\mathbb{E}_{\mathbb{P}_{x}}[\chi(x,c(x))]-\nu\right|\leq \tau$$

Learning Conjunctions using statistical query oracle.

Todo: Show that the *insignificant* and *harmful* literals above can be identified with the statistical query oracle.

7 / 14

Statistical Query Learnability

Let $\mathcal C$ be a concept class and $\mathcal H$ be a hypothesis class.

Definition (SQ learnability)

We say $\mathcal C$ is efficiently learnable from statistical queries using $\mathcal H$ if there exists a learning algorithm $\mathcal A$ and polynomials $p(\cdot,\cdot,\cdot), q(\cdot,\cdot,\cdot)$, and $r(\cdot,\cdot,\cdot)$ such that for all $d\geq 1$ for every target $c\in \mathcal C_d$, for every distribution $\mathbb P_x$ over $\mathcal X_d$, for any accuracy parameter $\epsilon>0$, if $\mathcal A$ is given access to the statistical query oracle, $\operatorname{STAT}(c;\mathbb P_x)$, and inputs ϵ and $\operatorname{size}(c)$ satisfies the following, $\mathcal A$ halts in time bounded by $p(d,\operatorname{size}(c),\frac{1}{\epsilon})$ and outputs $h\in \mathcal H$ such that $\mathbb P_x[h(x)\neq c(x)]\leq \epsilon$.

Further, for any query (χ, τ) made by \mathcal{A} to $\operatorname{STAT}(c; \mathbb{P}_{\times})$, the predicate χ must be evaluable in time $q(d, \operatorname{size}(c), \frac{1}{\epsilon})$ and $\frac{1}{\tau}$ is bounded by $r(d, \operatorname{size}(c, \frac{1}{\epsilon}))$.

- Why is there no δ here ?
 - The STAT $(c; \mathbb{P}_x)$ is required to output a value within the tolerance parameter τ with probability one. However, if the algorithm were randomised, then a δ parameter would be required.
 - Intuitively, This separates the randomisation in the sampling of the data and the randomisation in the algorithm.

8 / 14

SQ Learnability implies PAC learnability

Theorem

If $\mathcal C$ is efficiently SQ-learnable using $\mathcal H$ then $\mathcal C$ is efficiently PAC learnable using $\mathcal H$

Proof Strategy

- Let \mathcal{A} be the algorithm that learns \mathcal{C} using \mathcal{H} in the SQ model using k queries to $\mathrm{STAT}\left(c;\mathbb{P}_{x}\right)$
- Simulate \mathcal{A} in the PAC model, by replacing each call to SQ oracle with an empirical estimate of the SQ χ using $m = \Theta\left(\frac{1}{\tau^2}\log\frac{k}{\delta}\right)$ samples $(x_1, c(x_1), \ldots, (x_m, c(x_m)))$ drawn from $\operatorname{Ex}(c; \mathbb{P}_{\chi})$.
- Using Hoeffding's bound, $\left|\frac{1}{m}\sum_{i=1}^{m}\chi(x_i,c(x_i))-\mathbb{E}_{\mathbb{P}_x}[\chi(x,c(x))]\right|\leq \tau$ holds w.p. $1-\delta$.
- Applying a simple union bound over the k queries yields the desired result.

9/14

SQ Learnability implies PAC learnability with RCN

Theorem

If C is efficiently SQ-learnable using $\mathcal H$ then C is efficiently PAC learnable with Random Classification Noise (RCN) using $\mathcal H$

Proof sketch

We need to show that we can *simulate the statistical query* $STAT(c; \mathbb{P}_x)$ for any query χ using polynomial calls to $Ex_{\eta}(c; \mathbb{P}_x)$.

Extra notations for proof For simplicity, we will require the following—

- Assume the boolean functions are in $\{-1,1\}$ instead of $\{0,1\}$.
- To go from boolean to $\{-1,1\}$, map 0 to 1 and 1 to -1.
- Assume the queries are of the form $\chi: \mathcal{X} \times \{-1,1\} \to \{-1,1\}$ so that $\mathbb{P}_x[\chi(x,c(x))=-1]=\frac{1}{2}-\frac{1}{2}\mathbb{E}_{\mathbb{P}_x}[\chi(x,c(x))]$

Proof of SQ Learnability implies PAC learnability with RCN

$$\begin{split} \mathbb{E}_{\mathbb{P}_{x}}[\chi(x,c(x))] = & \mathbb{E}_{\mathbb{P}_{x}}[\chi(x,1).\mathbb{1}(c(x)=1)] + \mathbb{E}_{\mathbb{P}_{x}}[\chi(x,-1).\mathbb{1}(c(x)=-1)] \\ = & \mathbb{E}_{\mathbb{P}_{x}}\left[\chi(x,1).\left(\frac{1+c(x)}{2}\right)] + \mathbb{E}_{\mathbb{P}_{x}}[\chi(x,-1)\left(\frac{1-c(x)}{2}\right)\right] \\ = & \frac{1}{2}\left(\mathbb{E}_{\mathbb{P}_{x}}[\chi(x,1)] + \mathbb{E}_{\mathbb{P}_{x}}[\chi(x,-1)]\right) \\ & + \frac{1}{2}\left(\mathbb{E}_{\mathbb{P}_{x}}[\chi(x,1)c(x)] + \mathbb{E}_{\mathbb{P}_{x}}[\chi(x,-1)c(x)]\right) \end{split}$$

Note that there are two kinds of queries here

- $\mathbb{E}_{\mathbb{P}_x}[\chi(x,1)], \mathbb{E}_{\mathbb{P}_x}[\chi(x,-1)]$: Target independent queries. For any χ , using Hoeffding's bound, can be easily simulated using $\mathrm{Ex}_\eta(c;\mathbb{P}_x)$ for any η as the query is independent of target.
- $\mathbb{E}_{\mathbb{P}_x}[\chi(x,1)c(x)], \mathbb{E}_{\mathbb{P}_x}[\chi(x,-1)c(x)]$: Correlational queries. This computes the correlation between a function of x and the target. We will look into this in detail.

11/14

Proof of SQ Learnability implies PAC learnability with RCN

A correlation query has the form (φ, τ) where $\varphi : \mathcal{X} \to \{-1, 1\}, \tau \in \{0, 1\}$. The response of $\mathrm{STAT}(c; \mathbb{P}_x)$ is ν_{φ} such that $\left|\mathbb{E}_{\mathbb{P}_x}[\varphi(x)c(x)] - \nu_{\varphi}\right| \leq \tau$

Simulating responses to correlational queries

- Let $\sigma \sim B(\eta)$ be a r.v. that is 1 w.p. $1-\eta$ and -1 w.p. η . $\mathbb{E}[\sigma] = 1-2\eta$.
- Let (x, c(x)) be a random example from $\operatorname{Ex}(c; \mathbb{P}_x)$; then $(x, c(x)\sigma)$ is a random example from $\operatorname{Ex}_{\eta}(c; \mathbb{P}_x)$.

$$\mathbb{E}_{\mathbb{E}_{\mathbf{x}_{\eta}}(c;\mathbb{P}_{\mathbf{x}})}[\varphi(x)y] = \mathbb{E}_{\mathbb{P}_{\mathbf{x}}}\left[\mathbb{E}_{\sigma}[\varphi(x)c(x)\sigma]\right] = (1-2\eta)\mathbb{E}_{\mathbb{P}_{\mathbf{x}}}[\varphi(x)c(x)]$$

• Draw m examples from $\operatorname{Ex}_{\eta}(c; \mathbb{P}_{x})$, $((x_{1}, y_{1}) \dots (x_{m}, y_{m}))$ and define $\hat{\nu} = \frac{1}{m} \sum_{i=1}^{m} \varphi(x_{i}) y_{i}$. Choose m s.t. $\left| \hat{\nu} - \mathbb{E}_{\operatorname{Ex}_{\eta}(c; \mathbb{P}_{x})} [\varphi(x) y] \right| \leq \tau_{1} (1 - 2\eta)$ with prob. $1 - \delta$, where we choose τ_{1} later.

Proof of SQ Learnability implies PAC learnability with RCN

• Assume, we do not know the true η but some $\hat{\eta} \leq \eta_0$ (η_0 is an upper bound) such that $|\hat{\eta} - \eta| \leq \Delta$. Then

$$\begin{aligned} \left| \frac{\hat{\nu}}{1 - 2\eta} - \mathbb{E}_{\mathbb{P}_{x}}[\varphi(x)c(x)] \right| &\leq \left| \frac{\hat{\nu}}{1 - 2\eta} - \frac{\hat{\nu}}{1 - 2\eta} + \frac{\hat{\nu}}{1 - 2\eta} - \mathbb{E}_{\mathrm{Ex}_{\eta}(c;\mathbb{P}_{x})}[\varphi(x)y] \right| \\ &\leq \left| \hat{\nu} \right| \frac{2\Delta}{(1 - 2\eta_{0})^{2}} + \frac{1}{1 - 2\eta_{0}} \left| \hat{\nu} - \mathbb{E}_{\mathrm{Ex}_{\eta}(c;\mathbb{P}_{x})}[\varphi(x)y] \right| \\ &\leq \frac{2\Delta}{(1 - 2\eta_{0})^{2}} + \frac{\tau_{1}}{1 - 2\eta_{0}} \end{aligned}$$

- Make both term less than $\frac{\tau}{2}$. Set $m = O\left(\log(\frac{1}{\delta})\frac{1}{\sqrt{\tau(1-2\eta_0)}}\right)$ for the second term.
- For the first term, choose $\Delta \leq \frac{\tau}{2(1-2\eta_0)^2}$ and run the algorithm for all values of $\hat{\eta} = i\Delta$ for $i = 1, \ldots, \lfloor \frac{\eta_0}{\Delta} \rfloor$, let the corresponding output hypothesis be $h_1, \ldots, h_{\lfloor \frac{\eta_0}{\Delta} \rfloor}$.
- Finally, we can show that by testing each of the h_i on an independent sample of $\operatorname{Ex}_{\eta}(c; \mathbb{P}_x)$ and outputting the best one, solves our problem.

13 / 14

Conclusion

- We have seen that SQ learnability implies PAC learnability.
- We have also seen a much stronger result that SQ learnability implies PAC learnability with RCN.
- But does PAC learnability also imply SQ learnability? No, PARITIES
- Does PAC learnability with noise imply SQ learnability? No, Blum et. al. (2003)
- Thus SQ learnability is a strictly weaker condition that both PAC and PAC with RCN.
- People have used this implication to provide algorithms for learning with noise by providing an SQ learner and then simulating it with $\operatorname{Ex}_{\eta}(c; \mathbb{P}_{\times})$.
- For full proofs of everything, we have seen today refer to Chapter 5 in KV.