Lecture 13: SQ learning and PAC learning with
noise
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Recap: Statistical Computation Trade-off

i) Computational Complexity
® Concept class k-CNF and hence 3-CNF is efficiently PAC learnable.

® Under widely believed assumption RP#£NP, 3-DNF is not efficiently
PAC learnable.

However, note that by the distributive law of boolean operations,
every ¢ € 3-DNF' can be represented as some ¢ € 3-CNF.

¢p=TiV TV T3= A (L1 VbV L3) = ¢
U1€T1,lrETH 43 T3

Thus, we can learn to output a 3-CNF instead, which is
computationally feasible. So, if we are allowed to output a CNF, then
there is no problem in learning 3-DNF'.
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Recap: Statistical Computation Trade-off

ii) Statistical Complexity Both 3-CNF and 3-DNF have a finite VC
dimension and are hence PAC learnable (inefficiently for 3-DNF).

® 3-DNF Using upper bound on sample complexity for PAC learning,
¢ € 3-DNF4 can be inefficiently PAC learned with statistical complexity
O(9) calls to example oracle.

® 3-CNF By lower bound on sample compexity for PAC learning, any
3
@ € 3-CNF4 can be efficiently PAC learned with 2 ("Q’C—L\'Fd') =Q (M)

€

calls to example oracle.

® While 3-DNF4 could not be learned efficiently properly, it can be learned
efficiently improperly with more samples — d* vs d.

® Whether this statistical gap can be reduced while maintaining
computational efficiency remains an open question.
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PAC learning with noise

® So far, we have considered only noiseless setting due to the
definition of Ex (c¢;Py).

® |n the noiseless setting, an efficient consistent learner for a
hypothesis class implies an efficient PAC learning algorithm.

® However, this is not true when the dataset is noisy,

® In the rectangle learning algorithm, a negative point mislabelled as
positive can lead to an arbitrarily large rectangle.

® For Conjunctions, a negative example labelled as positive can lead to
the elimination of a large number of good literals.

® For the noisy case, we need to think of a different framework. We
will look at two of them today

® PAC with Random Classification Noise (RCN)
® Statistical Query Learning (SQ)
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PAC with Random Classification Noise

® For any c € C, distribution P, over X', and noise parameter n < %
a Noisy Example Oracle: Ex,, (c¢;Px) samples x ~ P, and returns
(x, c(x)) with probability 1 — 7 and (x,1 — c¢(x)) with probability 7.

Definition (PAC learning with RCN)

A concept class C is PAC learnable with RCN using hypothesis class
‘H if there exists a learning algorithm A such that for all d > 0, all
distributions P, over X, concept ¢ € Cy, and 0 < €,0,n < % if Ais
given access to Ex, (c; Px) and knows ¢, §,size(c), d, and 19 where
% > 1o > n A returns h € H such that with probability at least 1 — ¢,
we have that P, [h(x) # c(x)] < e. Further, the number of calls made

to Ex (c; Py) should be polynomial in size(c), d, %, %, ﬁ

Efficient PAC learnability: A should run in time polynomial in

1 1 _- 1
P S,SIZG(C), d, 1_—2770
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Learning Conjunctions with noise

® For any literal £ in ¢, we have that P,[¢(x) =0 A ¢c(x) = 1] = 0. We need
to put all such literals that have a significant probability mass of being
false in the distribution.

* Significant Literal A literal / is significant if P, [/(x) = 0] > &5

* Harmful Literal A literal £ is harmful if P,[{(x) = 0 A c(x) = 1] > &5

® Let h be a hypothesis that is a conjunction of all significant literals that
are not harmful.

® Let L denote the set of all 2d literals, S the set of significant literals, and
T the set of harmful literals. Then, T C S C L.

P.[h(x) # c(x)] = Pi[h(x) = 0 A c(x) A 1] + Py [h(x) = 1 A ¢(x) = 0]
< Y PJUx)=0Ac() AT+ D Pefl(x) = 0]

0eS\T CeL\S

€ € €
<IS\T|—+|L\D|l— < =

<IS\ Tl +IL\ DI < 5

Show that the probability estimates of whether a literal is significant and/or
harmful can be obtained using concentration bounds and is polynomial in all
required quantities.
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Statistical Query Learning

® Note that the above algorithm relied on computing statistics. We will
utilise this directly here.

® Instead of having access to an example oracle, here the learning algorithm
can access a statistical query oracle STAT (c; Py)

® A statistical query is a tuple (x, 7), where x : X x {0,1} — {0.1} is a
boolean function and 7 is the tolerance parameter.

® The response of STAT (c; Py) to a query (x,7) is a value v € [0, 1] s.t.
[Ep, [x(x, c(x))] —v| < 7

Learning Conjunctions using statistical query oracle.

Todo: Show that the insignificant and harmful literals above can be
identified with the statistical query oracle.
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Statistical Query Learnability

Let C be a concept class and H be a hypothesis class.

Definition (SQ learnability)

We say C is efficiently learnable from statistical queries using H if there
exists a learning algorithm A and polynomials p(-,-,-), q(-,-,-), and r(-,-,")
such that for all d > 1 for every target ¢ € Cq, for every distribution P, over
X4, for any accuracy parameter € > 0, if A is given access to the statistical
query oracle, STAT (c; Py), and inputs € and size(c) satisfies the following,
A halts in time bounded by p(d,size(c), ) and outputs h € H such that
BL[A(x) # ()] < .

Further, for any query (x,7) made by A to STAT (c;P,), the predicate x
must be evaluable in time g(d,size(c), ) and L is bounded by
r(d,sizec, 1).

® Why is there no 9 here 7

® The STAT (c; Py) is required to output a value within the tolerance
parameter 7 with probability one. However, if the algorithm were
randomised, then a § parameter would be required.

® |ntuitively, This separates the randomisation in the sampling of the
data and the randomisation in the algorithm. 8/14




SQ Learnability implies PAC learnability

If C is efficiently SQ-learnable using H then C is efficiently PAC
learnable using H

Proof Strategy

® Let A be the algorithm that learns C using H in the SQ model
using k queries to STAT (c; Py)

® Simulate A in the PAC model, by replacing each call to SQ oracle
with an empirical estimate of the SQ x using m = © (7_12 log g)
samples (x1, c(x1), ..., (Xm, c(xm))) drawn from Ex (c; Py).

® Using Hoeffding's bound,

LS (i, e(xi)) = B, [x(x, €(x))]] < 7 holds w.p. 1 — 6.
® Applying a simple union bound over the k queries yields the desired
result.
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SQ Learnability implies PAC learnability with RCN

If C is efficiently SQ-learnable using H then C is efficiently PAC
learnable with Random Classification Noise (RCN) using ‘H

Proof sketch

We need to show that we can simulate the statistical query
STAT (c; Py) for any query x using polynomial calls to Ex,, (¢; Px).

Extra notations for proof For simplicity, we will require the
following—

® Assume the boolean functions are in {—1,1} instead of {0,1}.

® To go from boolean to {—1,1}, map O to 1 and 1 to —1.

® Assume the queries are of the form x : X x {—-1,1} - {—1,1} so
that Px[x(x, c(x)) = —1] = 5 — 3Bp, [x(x, c(x))]
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Proof of SQ Learnability implies PAC learnability with RCN

B, [x(x. ()] =Er, [x(x. 1)-1(e(x) = 1)] + Bz, [x(x. ~1)-1(e(x) = ~1)
e (5 ) B g -) (“T(X))]

(B, [x(x, 1)] + Ez, [x(x, ~1)])

(B, [x(x, ()] + Ee, [x(x, ~1)c(x)])

:E]P)X

1
2
+

N| -

Note that there are two kinds of queries here

* Ep [x(x,1)],Ep_[x(x,—1)] : Target independent queries. For any x, using
Hoeffding's bound, can be easily simulated using Ex,, (c; Py) for any 7 as
the query is independent of target.

* Ep [x(x,1)c(x)], Ep,[x(x,—1)c(x)]: Correlational queries. This computes
the correlation between a function of x and the target. We will look into
this in detail.
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Proof of SQ Learnability implies PAC learnability with RCN

A correlation query has the form (¢, 7) where ¢ : X — {—1,1},7 € {0, 1}.
The response of STAT (c; Py) is v, such that |Ep, [p(x)c(x)] — v,| < 7

Simulating responses to correlational queries

® Let o ~ B(n) bear.wv. thatislw.p. 1 —nand —1 w.p. n. E[o] =1—27n.

® Let (x,c(x)) be a random example from Ex (c;P,); then (x, c(x)o) is a
random example from Ex, (¢;Py).
Epx, (cip0l(x)y] = Ep, [Eo[p(x)c(x)o]] = (1 — 2n)Ep,[o(x)c(x)]

® Draw m examples from Ex, (¢;Px), ((x1,¥1) .. (Xm,¥m)) and define
P = L7, ¢(x)yi. Choose ms.t. |9 — By, (e [p(x)¥]| < ma(1 —2n)
with prob. 1 — §, where we choose 77 later.
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Proof of SQ Learnability implies PAC learnability with RCN

® Assume, we do not know the true 1 but some 7} < 19 (19 is an upper
bound) such that |/ — n| < A. Then

N N N N

v 1% 1% v
—E < — —E .
L~ Bl < | — 1 g — B[]
2A 1
v ) —E Xn(C; ’
_|V‘ (1 _ 2770)2 1 _ 2770 v Exy, ( Px)[gp(x)y]
2A T1

® Make both term less than 7. Set m = O (Iog(%)ﬁ) for the
T\L—=<To

second term.

® For the first term, choose A < 2(1—7—2770)2 and run the algorithm for all

values of ) = iA for i =1,...,[ R, let the corresponding output
hypothesis be hy, ..., hL%J'

® Finally, we can show that by testing each of the h; on an independent
sample of Ex, (c;Px) and outputting the best one, solves our problem.
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Conclusion
® We have seen that SQ learnability implies PAC learnability.

® \We have also seen a much stronger result that SQ learnability
implies PAC learnability with RCN.

® But does PAC learnability also imply SQ learnability ? No,
PARITIES

® Does PAC learnability with noise imply SQ learnability ? No, Blum
et. al. (2003)

® Thus SQ learnability is a strictly weaker condition that both
PAC and PAC with RCN.

® People have used this implication to provide algorithms for learning

with noise by providing an SQ learner and then simulating it with
Ex), (¢;Px).

® For full proofs of everything, we have seen today refer to Chapter 5
in KV.
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