
Lecture 13: SQ learning and PAC learning with
noise
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Recap: Statistical Computation Trade-off

i) Computational Complexity
• Concept class k-CNF and hence 3-CNF is efficiently PAC learnable.
• Under widely believed assumption RP6=NP, 3-DNF is not efficiently
PAC learnable.

However, note that by the distributive law of boolean operations,
every φ ∈ 3-DNF can be represented as some ϕ ∈ 3-CNF.

φ = T1 ∨ T2 ∨ T3 =
∧

`1∈T1,`2∈T2,`3∈T3

(`1 ∨ `2 ∨ `3) = ϕ

Thus, we can learn to output a 3-CNF instead, which is
computationally feasible. So, if we are allowed to output a CNF, then
there is no problem in learning 3-DNF.
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Recap: Statistical Computation Trade-off
ii) Statistical Complexity Both 3-CNF and 3-DNF have a finite VC
dimension and are hence PAC learnable (inefficiently for 3-DNF).

• 3-DNF Using upper bound on sample complexity for PAC learning,
φ ∈ 3-DNFd can be inefficiently PAC learned with statistical complexity
O( d

ε ) calls to example oracle.

• 3-CNF By lower bound on sample compexity for PAC learning, any
ϕ ∈ 3-CNFd can be efficiently PAC learned with Ω

(
|3-CNFd |

ε

)
= Ω

(
|d3|
ε

)

calls to example oracle.

• While 3-DNFd could not be learned efficiently properly, it can be learned
efficiently improperly with more samples — d3 vs d .

• Whether this statistical gap can be reduced while maintaining
computational efficiency remains an open question.
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PAC learning with noise

• So far, we have considered only noiseless setting due to the
definition of Ex (c;Px ).
• In the noiseless setting, an efficient consistent learner for a
hypothesis class implies an efficient PAC learning algorithm.
• However, this is not true when the dataset is noisy,

• In the rectangle learning algorithm, a negative point mislabelled as
positive can lead to an arbitrarily large rectangle.

• For Conjunctions, a negative example labelled as positive can lead to
the elimination of a large number of good literals.

• For the noisy case, we need to think of a different framework. We
will look at two of them today
• PAC with Random Classification Noise (RCN)
• Statistical Query Learning (SQ)
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PAC with Random Classification Noise
• For any c ∈ C, distribution Px over X , and noise parameter η < 1

2 ,
a Noisy Example Oracle: Exη (c;Px ) samples x ∼ Px and returns
(x , c(x)) with probability 1− η and (x , 1− c(x)) with probability η.

Definition (PAC learning with RCN)
A concept class C is PAC learnable with RCN using hypothesis class
H if there exists a learning algorithm A such that for all d > 0, all
distributions Px over Xd , concept c ∈ Cd , and 0 < ε, δ, η < 1

2 if A is
given access to Exη (c;Px ) and knows ε, δ, size(c), d , and η0 where
1
2 > η0 ≥ η A returns h ∈ H such that with probability at least 1− δ,
we have that Px [h(x) 6= c(x)] ≤ ε. Further, the number of calls made
to Ex (c;Px ) should be polynomial in size(c), d , 1

ε ,
1
δ ,

1
1−2η0

.

Efficient PAC learnability: A should run in time polynomial in
1
ε ,

1
δ , size(c), d , 1

1−2η0
.

5 / 14

Learning Conjunctions with noise
• For any literal ` in c , we have that Px [`(x) = 0 ∧ c(x) = 1] = 0. We need

to put all such literals that have a significant probability mass of being
false in the distribution.

• Significant Literal A literal ` is significant if Px [`(x) = 0] ≥ ε
8d

• Harmful Literal A literal ` is harmful if Px [`(x) = 0 ∧ c(x) = 1] ≥ ε
8d

• Let h be a hypothesis that is a conjunction of all significant literals that
are not harmful.

• Let L denote the set of all 2d literals, S the set of significant literals, and
T the set of harmful literals. Then, T ⊆ S ⊆ L.
Px [h(x) 6= c(x)] = Px [h(x) = 0 ∧ c(x) ∧ 1] + Px [h(x) = 1 ∧ c(x) = 0]

≤
∑

`∈S\T
Px [`(x) = 0 ∧ c(x) ∧ 1] +

∑

`∈L\S
Px [`(x) = 0]

≤ |S \ T | ε8d + |L \ D| ε8d ≤
ε

2

Show that the probability estimates of whether a literal is significant and/or
harmful can be obtained using concentration bounds and is polynomial in all
required quantities. 6 / 14



Statistical Query Learning

• Note that the above algorithm relied on computing statistics. We will
utilise this directly here.

• Instead of having access to an example oracle, here the learning algorithm
can access a statistical query oracle STAT (c;Px )

• A statistical query is a tuple (χ, τ), where χ : X × {0, 1} → {0.1} is a
boolean function and τ is the tolerance parameter.

• The response of STAT (c;Px ) to a query (χ, τ) is a value ν ∈ [0, 1] s.t.
∣∣EPx [χ(x , c(x))]− ν

∣∣ ≤ τ

Learning Conjunctions using statistical query oracle.

Todo: Show that the insignificant and harmful literals above can be
identified with the statistical query oracle.
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Statistical Query Learnability
Let C be a concept class and H be a hypothesis class.

Definition (SQ learnability)
We say C is efficiently learnable from statistical queries using H if there
exists a learning algorithm A and polynomials p(·, ·, ·), q(·, ·, ·), and r(·, ·, ·)
such that for all d ≥ 1 for every target c ∈ Cd , for every distribution Px over
Xd , for any accuracy parameter ε > 0, if A is given access to the statistical
query oracle, STAT (c;Px ), and inputs ε and size(c) satisfies the following,
A halts in time bounded by p(d , size(c), 1

ε ) and outputs h ∈ H such that
Px [h(x) 6= c(x)] ≤ ε.

Further, for any query (χ, τ) made by A to STAT (c;Px ), the predicate χ
must be evaluable in time q(d , size(c), 1

ε ) and 1
τ is bounded by

r(d , size c, 1
ε ).

• Why is there no δ here ?
• The STAT (c;Px ) is required to output a value within the tolerance

parameter τ with probability one. However, if the algorithm were
randomised, then a δ parameter would be required.

• Intuitively, This separates the randomisation in the sampling of the
data and the randomisation in the algorithm. 8 / 14



SQ Learnability implies PAC learnability

Theorem
If C is efficiently SQ-learnable using H then C is efficiently PAC
learnable using H

Proof Strategy
• Let A be the algorithm that learns C using H in the SQ model
using k queries to STAT (c;Px )
• Simulate A in the PAC model, by replacing each call to SQ oracle
with an empirical estimate of the SQ χ using m = Θ

(
1
τ2 log k

δ

)

samples (x1, c(x1), . . . , (xm, c(xm))) drawn from Ex (c;Px ).
• Using Hoeffding’s bound,
| 1
m
∑m

i=1 χ(xi , c(xi ))− EPx [χ(x , c(x))]| ≤ τ holds w.p. 1− δ.
• Applying a simple union bound over the k queries yields the desired
result.
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SQ Learnability implies PAC learnability with RCN
Theorem
If C is efficiently SQ-learnable using H then C is efficiently PAC
learnable with Random Classification Noise (RCN) using H

Proof sketch

We need to show that we can simulate the statistical query
STAT (c;Px ) for any query χ using polynomial calls to Exη (c;Px ).

Extra notations for proof For simplicity, we will require the
following—
• Assume the boolean functions are in {−1, 1} instead of {0, 1}.
• To go from boolean to {−1, 1}, map 0 to 1 and 1 to −1.
• Assume the queries are of the form χ : X × {−1, 1} → {−1, 1} so
that Px [χ(x , c(x)) = −1] = 1

2 − 1
2EPx [χ(x , c(x))]
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Proof of SQ Learnability implies PAC learnability with RCN

EPx [χ(x , c(x))] =EPx [χ(x , 1).1(c(x) = 1)] + EPx [χ(x ,−1).1(c(x) = −1)]

=EPx

[
χ(x , 1).

(
1 + c(x)

2

)
] + EPx [χ(x ,−1)

(
1− c(x)

2

)]

=1
2
(
EPx [χ(x , 1)] + EPx [χ(x ,−1)]

)

+ 1
2
(
EPx [χ(x , 1)c(x)] + EPx [χ(x ,−1)c(x)]

)

Note that there are two kinds of queries here

• EPx [χ(x , 1)],EPx [χ(x ,−1)] : Target independent queries. For any χ, using
Hoeffding’s bound, can be easily simulated using Exη (c;Px ) for any η as
the query is independent of target.

• EPx [χ(x , 1)c(x)],EPx [χ(x ,−1)c(x)]: Correlational queries. This computes
the correlation between a function of x and the target. We will look into
this in detail.
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Proof of SQ Learnability implies PAC learnability with RCN

A correlation query has the form (ϕ, τ) where ϕ : X → {−1, 1},τ ∈ {0, 1}.
The response of STAT (c;Px ) is νϕ such that

∣∣EPx [ϕ(x)c(x)]− νϕ
∣∣ ≤ τ

Simulating responses to correlational queries

• Let σ ∼ B(η) be a r.v. that is 1 w.p. 1− η and −1 w.p. η. E[σ] = 1− 2η.
• Let (x , c(x)) be a random example from Ex (c;Px ); then (x , c(x)σ) is a

random example from Exη (c;Px ).

EExη(c;Px )[ϕ(x)y ] = EPx

[
Eσ[ϕ(x)c(x)σ]

]
= (1− 2η)EPx [ϕ(x)c(x)]

• Draw m examples from Exη (c;Px ), ((x1, y1) . . . (xm, ym)) and define
ν̂ = 1

m
∑m

i=1 ϕ(xi )yi . Choose m s.t.
∣∣∣ν̂ − EExη(c;Px )[ϕ(x)y ]

∣∣∣ ≤ τ1(1− 2η)
with prob. 1− δ, where we choose τ1 later.
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Proof of SQ Learnability implies PAC learnability with RCN
• Assume, we do not know the true η but some η̂ ≤ η0 (η0 is an upper

bound) such that |η̂ − η| ≤ ∆. Then
∣∣∣∣

ν̂

1− 2η − EPx [ϕ(x)c(x)]
∣∣∣∣ ≤
∣∣∣∣

ν̂

1− 2η −
ν̂

1− 2η + ν̂

1− 2η − EExη(c;Px )[ϕ(x)y ]
∣∣∣∣

≤|v̂ | 2∆
(1− 2η0)2 + 1

1− 2η0

∣∣∣ν̂ − EExη(c;Px )[ϕ(x)y ]
∣∣∣

≤ 2∆
(1− 2η0)2 + τ1

1− 2η0

• Make both term less than τ
2 . Set m = O

(
log( 1

δ ) 1√
τ(1−2η0)

)
for the

second term.
• For the first term, choose ∆ ≤ τ

2(1−2η0)2 and run the algorithm for all
values of η̂ = i∆ for i = 1, . . . , bη0

∆ c, let the corresponding output
hypothesis be h1, . . . , hb η0

∆ c.
• Finally, we can show that by testing each of the hi on an independent

sample of Exη (c;Px ) and outputting the best one, solves our problem.
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Conclusion
• We have seen that SQ learnability implies PAC learnability.
• We have also seen a much stronger result that SQ learnability
implies PAC learnability with RCN.
• But does PAC learnability also imply SQ learnability ? No,
PARITIES
• Does PAC learnability with noise imply SQ learnability ? No, Blum
et. al. (2003)
• Thus SQ learnability is a strictly weaker condition that both
PAC and PAC with RCN.
• People have used this implication to provide algorithms for learning
with noise by providing an SQ learner and then simulating it with
Exη (c;Px ).
• For full proofs of everything, we have seen today refer to Chapter 5
in KV.
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