
Lecture 13: Computational hardness in PAC
learning
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Recap: Classification Setting
• Instance space: X e.g. {0, 1}d ,Rd etc., label space: {Y = +1, 0}
• Hypothesis/Concept class over X : C,H ⊆ YX E.g.

• 2d - Axis-aligned rectangles e.g.((a1, b1), (a2, b2))
• CONJUNCTIONS e.g. x1 ∧ x3 ∧ x5
• Linear halfspaces e.g.

∑d
i=1 wixi ≥ b

• Distribution Px over X
• For any concept c ∈ C, distPx Example Oracle: Ex (c;Px ) samples x ∼ Px

and returns (x , c(x)). Refer to c as the “target concept”.
• Learning algorithm A for learning concept class C with hypothesis class H

can call the example oracle Ex (c;Px ) and must return some h ∈ H. Joint
distribution over randomness in Ex (c;Px ) and algorithm is P.

• Size of concept: A size of a concept is the minimum size over all
representations in that representation scheme
size(c) = minσ:ρ(σ)=c .size(σ)

• Instance size: We denote Xd as an instance space where all x ∈ Xd has
size d .
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Recap: PAC Learning

For d ≥ 1, let Cd be a concept class over Xd . Consider instance space
X =

⋃∞
d=1Xd and the corresponding concept class C =

⋃∞
d=1 Cd .

Definition (PAC learning)
A concept class C is PAC learnable with hypothesis class H if there
exists a learning algorithm A such that for all d > 0, all distributions
Px over Xd , concept c ∈ Cd , and ε, δ > 0, if A is given access to
Ex (c;Px ) and knows ε, δ,size(c), and d , A returns h ∈ H such that
with probability at least 1− δ, over inner randomisation of Ex (c;Px )
and A we have that Px [h(x) 6= c(x)] ≤ ε. Further, the number of
calls made to Ex (c;Px ) should be polynomial in size(c), d , 1

ε ,
1
δ .

Efficient PAC learnability: A should run in time polynomial in 1
ε ,

1
δ ,

size(c), and d . Usually size(c) is bounded by some polynomial in d
and hence can be ignored.
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Learning k-CNF
A different approach to proving learnability — By Reduction
• Let Xd = {0, 1}d , Y = {0, 1}
• k-CNFd over d boolean variables.

• Set of k-tuples S = {S1, . . .Sp}. ∀i : S i ⊂ [d ] and
∣∣S i
∣∣ = k.

• cS(x) =
∧p

i=1(
∨k

j=1 x
[
S i

j

]
)

Theorem (learning k-CNF)
The concept class C =

⋃
d≥1 k-CNFd is efficiently PAC learnable.

Proof by Reduction We need the concept of monotone conjunctions.
Monotone conjunctions are conjunctions without negated literals.

• Step 1: (Reduction) Show these exist: instance space Zk , a map
φ : {0, 1}d → Zk , and a bijection ϕ between k-CNFd and monotone
conjunctions on Zk .

• Step 2: (Algorithm) Show that the algorithm for learning conjunctions
also learns monotone conjunctions. Hence, C is PAC learnable.

• Step 3: (Reduction is polynomial) Show that φ, φ−1, and ϕ are
polynomially evaluable and thus C is efficiently PAC learnable. 4 / 17



Proof: Learning k-CNF

Step 2 is easy to prove and Step 3 will follow from step 1. So, we
look at Step 1.

Step 1: (Reduction) Show these exist: instance space Zk , a map
φ : {0, 1}d → Zk , and a bijection ϕ between k-CNFd and monotone
conjunctions on Zk .

• Zk : Construct new boolean variables z`1,...,`k where each `i is a
boolean variable or its negation in the original instance space Xd .
• φ: Given an assignment to the boolean vector x ∈ {0, 1}d , the
variable z`1,...,`k is assigned a value of 1 iff

∨k
i=1 x [`i ] = 1.

• ϕ The variable z`1,...,`k is present in the monotone conjunction iff
there is k-tuple {`1, . . . , `k} in the set S of the k-CNF.
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Consistent learner
An important concept is that of consistent learner. Not to be
confused with the consistent estimator used frequently in statistics.

Definition (Consistent Learner)
An algorithm A is a consistent learner for concept class C using
hypothesis class H, if ∀d ≥ 1, c ∈ Cd , and for all m ≥ 1, given as
input the sequence of examples (x1, c(x1)), . . . , (xm, c(xm)), A
outputs h ∈ Hd such that h(xi ) = c(xi ) for all i = 1, . . . ,m.

• If A runs in time poly in size(c), d ,m then A is an efficient
consistent learner.

• This is closely related to the notion of Empirical Risk
Minimisation with 0-1 loss.

• Thus, an efficient consistent learner can be converted to an efficient
PAC learner using uniform convergence results. In fact, all the PAC
learners studied so far are consistent learners.
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Upper and Lower bound on sample complexity

Theorem (Upper bound for PAC Learning)
Let C be a concept class. Let H be any hypothesis class of VC
dimension dVC. Let A be a consistent learner for C using H. Then for
all ε, δ > 0, A is a PAC learning algorithm for C using H provided it
can call Ex (c;Px ) m times where m ≥ κ

(
1
ε log 1

δ + dVC
ε log 1

ε

)
and κ

is some universal constant.

Theorem (Lower bound for PAC Learning)
Let C be a concept class with VC dim dVC > 25. Then, any PAC
learning algorithm for C must make at least dVC−1

32ε calls to Ex (c;Px ).

For proof, see Chapter 3 in KV.
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Lower bound on sample complexity for PAC learning

• Thus VC dimension exactly characterises the statistical complexity
of PAC learning.
• All classes with finite dVC are PAC learnable. E.g. Axis Aligned

rectangles, threshold functions, Finite classs (k-CNFs, k-DNFs).
• All classes with infinite dVC are not PAC learnable. e.g. Convex sets.

• This is an information-theoretic lower bound. Thus, there maybe
classes with finite dVC that are PAC learnable but not efficiently.

To prove that a certain concept class is not efficiently PAC learnable,
we need to prove a computational hardness result which will rely on a
computational hardness assumption. There are various such
assumptions including cryptographic, complexity-theoretic etc. Today,
we will use a common complexity theoretic assumption NP 6= RP
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Hardness of learning 3-DNFs

• Let Xd = {0, 1}d , Y = {0, 1}

• 3-DNFd over d boolean variables is the following hypothesis class.
• 3-DNFd = {T1 ∨ T2 ∨ T3|Ti ∈ CONJUNCTIONSd}

• Three conjunctions: T1,T2,T3, each having at most 2d literals.
Therefore, representation size of any c ∈ 3-DNF is bounded by 6d .

• VC dimension of 3-DNFd is at most 6d . Hence, by the above
theorem, 3-DNF is PAC learnable. However, we show below it is
not efficiently PAC learnable.

Theorem (Hardness of learning 3-DNF)
The concept class 3-DNF is not efficiently PAC learnable unless
RP=NP.
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P, NP, and RP (Basics)
The following is not a rigorous introduction but sufficient for us. Refer
to the book by Arora and Barak if you are curious to learn more.

• We consider the problem of computing a boolean function f whose input
is a finite sized strings of bits. This is also known as a decision problem.

• f can be identified with a language Lf = {σ ∈ {0, 1}∗ : f (σ) = 1}. The
central question of complexity theory is how long does it take to evaluate
f (σ) i.e. whether x is in Lf , as a function of size(σ)

• A language L is said to be in
• NP if ∃ polynomial p and poly-time algorithm π s.t. ∀σ ∈ {0, 1}∗,

σ ∈ L⇔ ∃u ∈ {0, 1}p(|σ|) s.t π(σ, u) = 1
• RP if ∃ a randomised poly-time algorithm π s.t. for all

• σ 6∈ L =⇒ π(σ) = 0
• σ ∈ L =⇒ π(σ) = 1 w.p. at least 1

2

• Fact: RP ⊆ NP. Widely believed: RP 6= NP.
• A language L is NP Complete if L is in NP and every problem in NP can

be reduced to L in poly-time.
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Proof of hardness of learning 3-DNF

Theorem (Hardness of learning 3-DNF)
The concept class 3-DNF is not efficiently PAC learnable unless
RP=NP.

Proof Strategy We will use the technique of reduction by reducing
an NP-Complete language L to the problem of PAC learning 3-DNF.
The proof has two steps.

• Step 1 Choose a NP-Complete language L. Then, given any string
σ construct a dataset D of +ve and -ve examples such that
∃φ ∈ 3-DNF where φ is consistent with the examples iff σ ∈ L.

• Step 2 Show that if D can be constructed in polynomial time and
there exists an efficient PAC learning algorithm for 3-DNF then
RP=NP.
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Proof of hardness of learning 3-DNF (Continued)

We will prove Step 2 first

• Consider dist P that assigns uniform mass over D and zero
elsewhere. Then, run a PAC learning algorithm with ε = 1

2|D| , δ = 1
2 .

• If σ ∈ L, with probability 1
2 , the algorithm returns h ∈ 3-DNF with

Px [h(x) 6= φ(x)] ≤ 1
2|D| = 0. Thus, h is consistent with D.

• If σ 6∈ L, then by definition no consistent 3-DNF exists, therefore
the algorithm cannot output any such h.

• Checking whther h is consistent with

• Thus, if a PAC learning algorithm for 3-DNF exists and
constructing D takes poly-time, then we have a randomised
poly-time algorithm for solving the decision problem of whether
σ ∈ L. This implies RP=NP.
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Proof of hardness of learning 3-DNF (Continued)
Now we prove Step 1

We choose the language of 3-COLOURABLE graphs. A graph is
3-COLOURABLE if there is an assignment of the vertices of the graph
to the set (r,g,b) s.t. no two adjacent vertices have the same color.

Given a graph G , we need to construct D such that ∃φ ∈ 3-DNF
where φ is consistent with D ⇐⇒ G is 3-COLOURABLE.

Given a graph G = (V ,E ) with |V | = d vertices, construct D:

• Denote v(i) = [. . . 1 . . .︸ ︷︷ ︸
0...i−1

0︸︷︷︸
i
. . . 1 . . .︸ ︷︷ ︸
i+1...d

] ∈ {0, 1}d

• For i < j , denote
e(i , j) = [. . . 1 . . .︸ ︷︷ ︸

0...i−1
0︸︷︷︸
i
. . . 1 . . .︸ ︷︷ ︸
i+1...j−1

0︸︷︷︸
j
. . . 1 . . .︸ ︷︷ ︸
j+1...d

] ∈ {0, 1}d

• Denote D+ = {(v(i), 1) | i ∈ V }, D− = {(e(i , j), 0) | (i , j) ∈ E}.

• Construct the dataset D = D+
⋃
D−
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Proof of hardness of learning 3-DNF (Continued)

Part I: G is 3-COLOURABLE =⇒ ∃φ ∈ 3-DNF consistent with D

Suppose that G is 3-COLOURABLE. Let Vr ,Vb, and Vg be the sets of
vertices of respective colors. Let z1, . . . , zd denote the d boolean variables
corresponding to the d vertices.

Let Tr =
∧

i 6∈Vr
zi , Tb =

∧
i 6∈Vb

zi , and Tg =
∧

i 6∈Vg
zi .

Now we need to show that φ = Tr ∨ Tg ∨ Tb is consistent with D.

• For all i ∈ Vr , zi 6∈ Tr =⇒ Tr (vi ) = 1. Similarly for Vb and Vg .
• For every edge (i , j) ∈ E , s.t. i ∈ Vg and j ∈ Vb,

• zi ∈ Tb =⇒ Tb(e(i , j)) = 0,
• zj ∈ Tg =⇒ Tb(e(i , j)) = 0, and
• zi , zj ∈ Tr =⇒ Tr (e(i , j)) = 0.

This completes this part of the proof.
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Proof of hardness of learning 3-DNF (Continued)

Part II: ∃φ ∈ 3-DNF consistent with D =⇒ G is 3-COLOURABLE

Suppose φ = Tr ∨ Tb ∨ Tg is consistent with D

To assign colours, note that ∀i , φ(v(i)) = 1 =⇒ ∃j ∈ {r,g,b} s.t.
Tj(v(i)) = 1. Colour the vertex i with colour j . Now, we need to prove that
this is a 3-colouring of the graph. We will proceed via contradiction —

• Assume that two adjacent vertices i , j are assigned the same colour (say
red), then Tr (v(i)) = Tr (vj) = 1.

• This implies that the literals zi , zj , and z̄k ∀k 6= i , j are not present in Tr .
• However, if Tr does not contain any negated literals except z̄i , z̄j or the

positive literals zi , zj , then Tr (e(i , j)) = 1 =⇒ φ(e(i , j)) = 1.
• This presents a contradiction to φ being consistent with D.

This proves that the coloring scheme is a 3-colouring of the graph.
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Statistical Computation Trade-off

i) Computational Complexity

• Concept class k-CNF and hence 3-CNF is efficiently PAC learnable.

• Under widely believed assumption RP6=NP, 3-DNF is not efficiently
PAC learnable.

However, note that by the distributive law of boolean operations,
every φ ∈ 3-DNF can be represented as some ϕ ∈ 3-CNF.

φ = T1 ∨ T2 ∨ T3 =
∧

`1∈T1,`2∈T2,`3∈T3

(`1 ∨ `2 ∨ `3) = ϕ

Thus, we can learn to output a 3-CNF instead, which is
computationally feasible. So, if we are allowed to output a CNF, then
there is no problem in learning 3-DNF.
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Statistical Computation Trade-off
ii) Statistical Complexity Both 3-CNF and 3-DNF have a finite VC
dimension and are hence PAC learnable (inefficiently for 3-DNF).

• 3-DNF Using upper bound on sample complexity for PAC learning,
φ ∈ 3-DNFd can be inefficiently PAC learned with statistical complexity
O( d

ε ) calls to example oracle.

• 3-CNF By lower bound on sample compexity for PAC learning, any
ϕ ∈ 3-CNFd can be efficiently PAC learned with Ω

(
|3-CNFd |

ε

)
= Ω

(
|d3|

ε

)
calls to example oracle.

• While 3-DNFd could not be learned efficiently properly, it can be learned
efficiently improperly with more samples — d3 vs d .

• Whether this statistical gap can be reduced while maintaining
computational efficiency remains an open question.

This raises the question whether all hypothesis classes can be learned
efficiently (albeit improperly). The answer is no under some cryptographic
hadness assumptions.
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