
Lecture 11: Computational Learning Theory
PAC Learning

1 / 13



Computational Learning Theory
• So far our questions were of the form — Given m samples iid from a
distribution Px , can we upper bound the error as ε = O(m−α)?

• In particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

• [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):
• How does the algorithm “interact” with the distribution ?
• What information does the algorithm have about the “learning

problem” ?
• How “long” is the algorithm allowed to run etc ?
• How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2 / 13



Computational Learning Theory
• So far our questions were of the form — Given m samples iid from a
distribution Px , can we upper bound the error as ε = O(m−α)?

• In particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

• [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):
• How does the algorithm “interact” with the distribution ?
• What information does the algorithm have about the “learning

problem” ?
• How “long” is the algorithm allowed to run etc ?
• How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2 / 13



Computational Learning Theory
• So far our questions were of the form — Given m samples iid from a
distribution Px , can we upper bound the error as ε = O(m−α)?

• In particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

• [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):

• How does the algorithm “interact” with the distribution ?
• What information does the algorithm have about the “learning

problem” ?
• How “long” is the algorithm allowed to run etc ?
• How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2 / 13



Computational Learning Theory
• So far our questions were of the form — Given m samples iid from a
distribution Px , can we upper bound the error as ε = O(m−α)?

• In particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

• [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):
• How does the algorithm “interact” with the distribution ?

• What information does the algorithm have about the “learning
problem” ?

• How “long” is the algorithm allowed to run etc ?
• How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2 / 13



Computational Learning Theory
• So far our questions were of the form — Given m samples iid from a
distribution Px , can we upper bound the error as ε = O(m−α)?

• In particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

• [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):
• How does the algorithm “interact” with the distribution ?
• What information does the algorithm have about the “learning

problem” ?

• How “long” is the algorithm allowed to run etc ?
• How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2 / 13



Computational Learning Theory
• So far our questions were of the form — Given m samples iid from a
distribution Px , can we upper bound the error as ε = O(m−α)?

• In particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

• [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):
• How does the algorithm “interact” with the distribution ?
• What information does the algorithm have about the “learning

problem” ?
• How “long” is the algorithm allowed to run etc ?

• How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2 / 13



Computational Learning Theory
• So far our questions were of the form — Given m samples iid from a
distribution Px , can we upper bound the error as ε = O(m−α)?

• In particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

• [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):
• How does the algorithm “interact” with the distribution ?
• What information does the algorithm have about the “learning

problem” ?
• How “long” is the algorithm allowed to run etc ?
• How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2 / 13



Computational Learning Theory
• So far our questions were of the form — Given m samples iid from a
distribution Px , can we upper bound the error as ε = O(m−α)?

• In particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

• [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):
• How does the algorithm “interact” with the distribution ?
• What information does the algorithm have about the “learning

problem” ?
• How “long” is the algorithm allowed to run etc ?
• How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2 / 13



Binary classification Setting
Some terminologies

• Instance space: X e.g. R2, {0, 1}d ,Rd etc.

• Label space: Y = +1,−1

• Hypothesis/Concept classes are represented by : C,H,F . They are
sets of maps from X to Y. (In other words, classes of labelling
functions) E.g.
• CONJUNCTIONS e.g. x1 ∧ x3 ∧ x5
• DISJUNCTIONS e.g. x2 ∨ x3 ∨ x5
• Linear halfspaces e.g.

∑d
i=1 wixi ≥ b

• Data Distribition Px over X

• Example Oracle: An oracle Ex (c;Px ) that samples x ∼ Px and
returns (x , c(x)).

• Target Concept Refer to c as the “target concept” (ground truth).

3 / 13



Learning Algorithm

• Learning algorithm An algorithm A
• for learning concept class C
• with hypothesis class H
• can call the example oracle Ex (c;Px ) many times
• and must return some h ∈ H.

• Two sources of randomisation :
• Randomness from dataInherently, due to the randomisation of

Ex (c;Px ), A is always randomised. This randomness is from Px .
• Randomness from algorithm After receiving data from Ex (c;Px ),
A can flip and unbiased coin and introduce further randomness into
the algorithm. Let the joint distribution over Px and internal coin
flips of A be P.

4 / 13



Probably Approximately Correct Learnability: Attempt 1
Definition (PAC learning)
A concept class C is PAC learnable with hypothesis class H if there
exists a learning algorithm A such that for all distributions Px ,
concept c ∈ C, and ε, δ > 0, if A is given access to Ex (c;Px ) and
knows ε, δ, A returns h ∈ H such that with probability at least 1− δ,
over inner randomisation of Ex (c;Px ) and A we have that
Px [h(x) 6= c(x)] ≤ ε. Further, the number of calls made to Ex (c;Px )
must be polynomial in 1

ε ,
1
δ .

• If A runs in time poly
(

1
ε ,

1
δ

)
then C is efficiently PAC learnable.

• If C is learnable with H = C, then we say C is proper learnable
Otherwise, it is referred to as improper learnable We will focus on
proper PAC learnability for now.

• Number of times A calls Ex (c;Px ) is equal to the sample size m.
So far, we have written ε as function of m i.e. ε(m, δ) is the
statistical error rate.

5 / 13



Understanding the definition

What are some things or questions that stand out to you about
learnability in this definition ?

• Efficiency
• What is one unit of time ?
• What are possible reasons of inefficiency ?
• What kinds of computational constraints are required on h ?

• Available information to A
• What does A know and what does A not know ?
• What are some possible changes to Ex (c;Px ) that can simulate real

environments ? How can they change a class’ learnability ?

Discuss in pairs

6 / 13



Understanding the definition
• Efficiency.

• What is one unit of time ?
Call to Ex (c;Px ) takes unit time. The algorithm is run on a turing
machine.

• What are possible reasons of inefficiency ?
Exponential sample complexity or exponential running time.

• What kinds of computational constraints are required on h ?
h needs to be poly evaluable, otherwise trivial

• Available information
• What does A know and what does A not know ?

Knows C but not c. Does not know Px .
• What are some changes to Ex (c;Px ) that can simulate real

environments ?
Noisy Oracle (RCN, Massart, Tsybakov), Positive/Negative only,
Membership Query, Statistical Query

• It attempts to separate the two things
• Having sufficient data
• Being able to compute the estimator/hypothesis from the data

7 / 13



Learning Axis-Aligned Rectangles
• Let X = R2,Y = {+1, 0}
• C is the class of Axis-Aligned Rectangle Classifiers. A concept c ∈ C
labels x ∈ X positive (+1) if x lies inside the rectangle and 0 o.w.

Theorem
The concept class of axis aligned rectangles is efficiently proper PAC
learnable.

Proof:

• Algorithm A chooses m = 4
ε log

(
4
δ

)
, queries Ex (c;Px ) m times and

outputs the smallest axis-aligned rectangle R ′ that contains all +ve points.
• Let R be the target rectangle. Choose 4 regions T1,T2,T3,T4 along the

inner sides of R such that each region has mass ε
4 under Px . Note that if

Ex (c;Px ) returns at least one point in all of these regions with probability
greater than 1− δ, it suffices for us.

• Let Ai be the event that Ex (c;Px ) upon m calls does not return any
point in Ti . Show P[

⋃
i Ai ] ≤ 4 exp

(
−mε

4
)

• Setting m = 4
ε log

(
4
δ

)
completes the proof.

8 / 13



Probably Approximately Correct Learnability: Attempt 2
Issue: Previous definition does not account for the size of the concept class
or the instance space.

• Representation scheme for concept class: ρ : (Σ ∪ R)∗ → C is a
representation scheme for C. e.g. ρ((x1, y1), (x2, y2)) = axis-aligned
rectangle with bottom left corner at (x1, y1) and top right corner in
(x2, y2). (Unit cost to represent alphabets in Σ and numbers in R)

• Size of representations The function size : (Σ ∪ R)∗ → N measures the
size of a representation in (Σ ∪ R)∗.

• Size of concept: A size of a concept is the minimum size over all
representations in that representation scheme
size(c) = minσ:ρ(σ)=c .size(σ)

What are some examples where the choice of ρ affects the size of a concept?

• Instance size: Instances x ∈ X also has an associated size e.g. memory to
store. We denote Xd as an instance space where all x ∈ Xd has size d .

Often these are clear from context but sometimes need further thought.
9 / 13



Probably Approximately Correct Learnability: Attempt II

For d ≥ 1, let Cd be a concept class over Xd . Consider instance space
X =

⋃∞
d=1Xd and the corresponding concept class C =

⋃∞
d=1 Cd .

Definition (PAC learning)
A concept class C is PAC learnable with hypothesis class H if there
exists a learning algorithm A such that for all d > 0, all distributions
Px over Xd , concept c ∈ Cd , and ε, δ > 0, if A is given access to
Ex (c;Px ) and knows ε, δ,size(c), and d , A returns h ∈ H such that
with probability at least 1− δ, over inner randomisation of Ex (c;Px )
and A we have that Px [h(x) 6= c(x)] ≤ ε. Further, the number of
calls made to Ex (c;Px ) should be polynomial in size(c), d , 1

ε ,
1
δ .

Efficient PAC learnability: A should run in time polynomial in 1
ε ,

1
δ ,

size(c), and d . Usually size(c) is bounded by some polynomial in d
and hence can be ignored.

10 / 13



Learning CONJUNCTIONS
Now we will see an example of PAC Learning Attempt II

• Let Xd = {0, 1}d , Y = {0, 1}
• CONJUNCTIONSd over d boolean variables z1, . . . , zd

• literal is a variable or its negation
• conjunction is an AND of literals.

• A conjunction can be represented with two sets P,N ⊆ [d ]

cP,N =
∧
i∈P

zi ∧
∧
j∈N

z̄j

• The class of CONJUNCTIONSd is the set of all conjunctions.

CONJUNCTIONSd = {cP,N |P,N ⊆ [d ]}

• Note an efficient representation scheme: size cP,N ≤ d

Theorem (learning conjunctions)
The concept class C =

⋃
d≥1 CONJUNCTIONSd is efficiently PAC

learnable.
11 / 13



Proof of learnability of CONJUNCTIONS
Let c∗ be the target concept.

Proof First, we state the algorithm and then prove the guarantees

Algorithm Fix m ≥ 2d
ε log

(
2d
δ

)
and run the following algorithm. Start with

P,N = [d ], [d ];

• For i = 1 . . . m
• Call Ex (c∗;D) and let (x , y) be the output.
• If y = +1, eliminate all literals from P,N that cause cP,N(x) = 0.

• i.e. P = P\{j : xj = 0}, N = N \ {j : xj = 1}

• Denote the resultant conjunction as h = cP,N . Return h.

Convince yourself that

• the returned conjunction is the largest conjunction that is accurate on the
m observed data samples.

• All eliminated literals are also not present in c∗.
12 / 13



Proof of learnability of CONJUNCTIONS (Continued)
Approximately Correct For a literal ` and an instance x ∈ {0, 1}d , let `(x)
denote the assignment of the literal ` on the instance x . i.e. if ` = zi then
`(x) = xi . If ` = z̄i , then `(x) = 1− xi .

• A literal ` is “bad” if Px [c∗(x) = 1 ∧ `(x) = 0] ≥ ε
2d .

• Note by construction, Px [h(x) 6= c∗(x)] = Px [h(x) = 0 ∧ c(x) = 1].
• Let B be the set of bad literals and h contain no literals in B. Then,

Px [h(x) = 0 ∧ c(x) = 1] ≤
∑
`∈B̄ Px [h(x) = 0 ∧ `(x) = 1] ≤ ε

Probably Correct Now, we need to prove that h contains no bad literals.
Let A` be the event that ` is not eliminated by the algorithm after m calls

• Bound P[A`] ≤ (1− ε
2d )m ≤ exp(− εm2d ).

• P [at least 1 “bad” literal remain] ≤ P
[⋃

`∈B A`
]
≤
∑2d
`=0 exp(− εm2d )

• Use m ≥ 2d
ε log

(
2d
δ

)
to show that all bad literals are eliminated with

probability 1− δ.

13 / 13


