Lecture 11: Computational Learning Theory
PAC Learning

1/13

Computational Learning Theory

® So far our questions were of the form — Given m samples iid from a
distribution Py, can we upper bound the error as € = O(m~%)?

2/13

Computational Learning Theory

® So far our questions were of the form — Given m samples iid from a
distribution P, can we upper bound the error as e = O(m~)?

® |n particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

2/13

Computational Learning Theory

® So far our questions were of the form — Given m samples iid from a
distribution P, can we upper bound the error as e = O(m~)?

® |n particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

¢ [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):

2/13

Computational Learning Theory

® So far our questions were of the form — Given m samples iid from a
distribution P, can we upper bound the error as e = O(m~)?

® |n particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

¢ [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):

® How does the algorithm “interact” with the distribution ?

2/13

Computational Learning Theory

® So far our questions were of the form — Given m samples iid from a
distribution P, can we upper bound the error as e = O(m~)?

® |n particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

¢ [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):

® How does the algorithm “interact” with the distribution ?

® What information does the algorithm have about the “learning
problem” 7

2/13

Computational Learning Theory

® So far our questions were of the form — Given m samples iid from a
distribution P, can we upper bound the error as e = O(m~)?

® |n particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

¢ [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):

® How does the algorithm “interact” with the distribution ?

® What information does the algorithm have about the “learning
problem” 7

® How “long” is the algorithm allowed to run etc ?

2/13

Computational Learning Theory

® So far our questions were of the form — Given m samples iid from a
distribution P, can we upper bound the error as e = O(m~)?

® |n particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

¢ [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):

® How does the algorithm “interact” with the distribution ?

® What information does the algorithm have about the “learning
problem” 7

® How “long” is the algorithm allowed to run etc ?

® How will the output estimator be “represented” ?

2/13

Computational Learning Theory

® So far our questions were of the form — Given m samples iid from a
distribution P, can we upper bound the error as e = O(m~)?

® |n particular, we have discussed how to use properties of the
distribution to give better statistical “rates”.

¢ [Today] In Computational Learning Theory, we will treat the
learning algorithm as a computational process. This requires making
a few things explicit (Discuss in pairs what they can be):

® How does the algorithm “interact” with the distribution ?

® What information does the algorithm have about the “learning
problem” 7

® How “long” is the algorithm allowed to run etc ?

® How will the output estimator be “represented” ?

Finally, this proposes an answer to the question what can be “learned”
under various restrictions.

2/13

Binary classification Setting

Some terminologies

Instance space: X e.g. R?,{0,1}9, R etc.
Label space: Y =+1,-1

Hypothesis/Concept classes are represented by : C,H,F. They are
sets of maps from X’ to). (In other words, classes of labelling
functions) E.g.

® CONJUNCTIONS e.g. x; A x3 A X5
® DISJUNCTIONS e.g. xo V x3 V x5
® Linear halfspaces e.g. 37, wix; > b

Data Distribition P, over X

Example Oracle: An oracle Ex (c¢; Py) that samples x ~ P, and
returns (x, c(x)).

Target Concept Refer to ¢ as the “target concept” (ground truth).

3/13

Learning Algorithm

® |earning algorithm An algorithm A
® for learning concept class C
® with hypothesis class H
® can call the example oracle Ex (¢; Py) many times
® and must return some h € H.
® Two sources of randomisation :

® Randomness from datalnherently, due to the randomisation of
Ex (c;Py), A is always randomised. This randomness is from P,.

® Randomness from algorithm After receiving data from Ex (c; Py),

A can flip and unbiased coin and introduce further randomness into
the algorithm. Let the joint distribution over P, and internal coin
flips of A be P.

4/13

Probably Approximately Correct Learnability: Attempt 1

Definition (PAC learning)

A concept class C is PAC learnable with hypothesis class H if there
exists a learning algorithm A such that for all distributions P,
concept ¢ € C, and €, > 0, if A is given access to Ex (¢;Py) and
knows ¢, 6, A returns h € H such that with probability at least 1 — 6,
over inner randomisation of Ex (c;Py) and A we have that

P,[h(x) # c(x)] < e. Further, the number of calls made to Ex (c; Py)
\must be polynomial in %, %.

J

* If A runs in time poly (%, %) then C is efficiently PAC learnable.

e If C is learnable with H = C, then we say C is proper learnable
Otherwise, it is referred to as improper learnable We will focus on
proper PAC learnability for now.

® Number of times A calls Ex (c;Py) is equal to the sample size m.
So far, we have written € as function of m i.e. €(m,d) is the
statistical error rate.

5/13

Understanding the definition

What are some things or questions that stand out to you about
learnability in this definition ?

e Efficiency

® What is one unit of time 7

® What are possible reasons of inefficiency ?

® What kinds of computational constraints are required on h ?
® Available information to A

® What does A know and what does A not know ?

® What are some possible changes to Ex (c; P,) that can simulate real
environments 7 How can they change a class’ learnability 7

Discuss in pairs

6/13

Understanding the definition

e Efficiency.
® What is one unit of time 7
Call to Ex (c; Py) takes unit time. The algorithm is run on a turing
machine.
® What are possible reasons of inefficiency 7
Exponential sample complexity or exponential running time.
® What kinds of computational constraints are required on h ?
h needs to be poly evaluable, otherwise trivial
® Available information
® What does A know and what does A not know ?
Knows C but not ¢. Does not know P,.
® \What are some changes to Ex (c;P,) that can simulate real
environments 7
Noisy Oracle (RCN, Massart, Tsybakov), Positive/Negative only,
Membership Query, Statistical Query
® |t attempts to separate the two things
® Having sufficient data
® Being able to compute the estimator/hypothesis from the data

7/13

Learning Axis-Aligned Rectangles

° Let ¥ =R% Y = {+1,0}

® (C is the class of Axis-Aligned Rectangle Classifiers. A concept ¢ € C
labels x € X positive (+1) if x lies inside the rectangle and 0 o.w.

The concept class of axis aligned rectangles is efficiently proper PAC
learnable.

Proof:

* Algorithm A chooses m = % log (%) queries Ex (c; P,) m times and
outputs the smallest axis-aligned rectangle R’ that contains all +ve points.
® Let R be the target rectangle. Choose 4 regions Ty, T», T3, T4 along the
inner sides of R such that each region has mass § under P,. Note that if
Ex (¢; Py) returns at least one point in all of these regions with probability
greater than 1 — 4, it suffices for us.
® Let A; be the event that Ex (c;P) upon m calls does not return any
point in T;. Show P[UJ; Ai] < 4exp (—29)
® Setting m = *log (3) completes the proof.
8/13

Probably Approximately Correct Learnability: Attempt 2
Issue: Previous definition does not account for the size of the concept class
or the instance space.

® Representation scheme for concept class: p: (X UR)" — Cisa
representation scheme for C. e.g. p((x1,y1), (x2,2)) = axis-aligned
rectangle with bottom left corner at (x1,y1) and top right corner in
(x2, y2). (Unit cost to represent alphabets in & and numbers in R)

® Size of representations The function size : (X UR)* — N measures the
size of a representation in (X UR)*.

® Size of concept: A size of a concept is the minimum size over all
representations in that representation scheme
size(c) = min,.,(;)—c -Size(0)

What are some examples where the choice of p affects the size of a concept?

® [nstance size: Instances x € & also has an associated size e.g. memory to
store. We denote Xy as an instance space where all x € Xy has size d.

Often these are clear from context but sometimes need further thought.
9/13

Probably Approximately Correct Learnability: Attempt Il

For d > 1, let C4 be a concept class over X,. Consider instance space
X =g Xg and the corresponding concept class C = |Jg2; Cq.

Definition (PAC learning)

A concept class C is PAC learnable with hypothesis class H if there
exists a learning algorithm A such that for all d > 0, all distributions
P, over X4, concept ¢ € Cy, and €, > 0, if A is given access to

Ex (c;Py) and knows ¢, d,size(c), and d, A returns h € H such that
with probability at least 1 — §, over inner randomisation of Ex (c; Py)
and A we have that Py [h(x) # c(x)] < e. Further, the number of

\calls made to Ex (c; Px) should be polynomial in size(c), d, %, %.

J

Efficient PAC learnability: A should run in time polynomial in %, %,
size(c), and d. Usually size(c) is bounded by some polynomial in d

and hence can be ignored.

10/13

Learning CONJUNCTIONS

Now we will see an example of PAC Learning Attempt |l

e Let Xy ={0,1}9, ¥ ={0,1}
e CONJUNCTIONS, over d boolean variables z, ..., z4
® literal is a variable or its negation
® conjunction is an AND of literals.
® A conjunction can be represented with two sets P, N C [d]

cpN = /\Z,'/\/\Z_J'

icP JEN
® The class of CONJUNCTIONS is the set of all conjunctions.
CONJUNCTIONSy = {cp.n|P, N C [d]}

® Note an efficient representation scheme: sizecp y < d

Theorem (learning conjunctions)
The concept class C = Jy>1 CONJUNCTIONS is efficiently PAC
learnable.

11/13

Proof of learnability of CONJUNCTIONS

Let c* be the target concept.

Proof First, we state the algorithm and then prove the guarantees

Algorithm Fix m > % log (%) and run the following algorithm. Start with
P, N =[d],[d];

e Fori=1... m
® Call Ex(c*; D) and let (x,y) be the output.
® If y = +1, eliminate all literals from P, N that cause cp y(x) = 0.
® je. P=P\{j:x;=0} N=N\{j:x =1}

® Denote the resultant conjunction as h = cp n. Return h.

Convince yourself that

® the returned conjunction is the largest conjunction that is accurate on the
m observed data samples.

® All eliminated literals are also not present in c*.

12/13

Proof of learnability of CONJUNCTIONS (Continued)

Approximately Correct For a literal £ and an instance x € {0,1}7, let £(x)

denote the assignment of the literal ¢ on the instance x. i.e. if £ = z; then

Ux) =x;. If £=Z;, then {(x) =1 — x;.

® Aliteral £is “bad" if P,[c*(x) = 1 A {(x) = 0] > 55.

® Note by construction, Py [h(x) # c*(x)] = Px[h(x) = 0 A c(x) = 1].

® |et B be the set of bad literals and h contain no literals in B. Then,
Pe[h(x) =0Ac(x) =1] <D ,cgPx[h(x) =0AL(x) =1] <€

Probably Correct Now, we need to prove that h contains no bad literals.
Let A, be the event that ¢ is not eliminated by the algorithm after m calls
® Bound P[A/] < (1 — 55)" < exp(—57)-

T . 2d
e PJlat least 1 “bad” literal remain] <P {U%BAK} <o exp(—57)
® Use m> % log (%) to show that all bad literals are eliminated with

probability 1 — 6.

13/13

