Lecture 11: Computational Learning Theory PAC Learning

• So far our questions were of the form — Given m samples iid from a distribution \mathbb{P}_x , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?
 - What information does the algorithm have about the "learning problem"?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?
 - What information does the algorithm have about the "learning problem"?
 - How "long" is the algorithm allowed to run etc?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?
 - What information does the algorithm have about the "learning problem"?
 - How "long" is the algorithm allowed to run etc?
 - How will the output estimator be "represented" ?

- So far our questions were of the form Given m samples iid from a distribution \mathbb{P}_{\times} , can we upper bound the error as $\epsilon = O(m^{-\alpha})$?
- In particular, we have discussed how to use properties of the distribution to give better statistical "rates".
- [Today] In Computational Learning Theory, we will treat the learning algorithm as a computational process. This requires making a few things explicit (Discuss in pairs what they can be):
 - How does the algorithm "interact" with the distribution ?
 - What information does the algorithm have about the "learning problem"?
 - How "long" is the algorithm allowed to run etc?
 - How will the output estimator be "represented" ?

Finally, this proposes an answer to the question what can be "learned" under various restrictions.

Binary classification Setting

Some terminologies

- Instance space: \mathcal{X} e.g. $\mathbb{R}^2, \{0,1\}^d, \mathbb{R}^d$ etc.
- Label space: $\mathcal{Y} = +1, -1$
- Hypothesis/Concept classes are represented by : $\mathcal{C}, \mathcal{H}, \mathcal{F}$. They are sets of maps from \mathcal{X} to \mathcal{Y} . (In other words, classes of labelling functions) E.g.
 - CONJUNCTIONS e.g. $x_1 \wedge x_3 \wedge x_5$
 - DISJUNCTIONS e.g. $x_2 \lor x_3 \lor x_5$
 - Linear halfspaces e.g. $\sum_{i=1}^{d} w_i x_i \ge b$
- Data Distribition \mathbb{P}_{x} over \mathcal{X}
- Example Oracle: An oracle $\operatorname{Ex}(c; \mathbb{P}_x)$ that samples $x \sim \mathbb{P}_x$ and returns (x, c(x)).
- Target Concept Refer to c as the "target concept" (ground truth).

Learning Algorithm

- ullet Learning algorithm An algorithm ${\cal A}$
 - ullet for learning concept class ${\cal C}$
 - ullet with hypothesis class ${\cal H}$
 - can call the example oracle $\mathrm{Ex}\,(c;\mathbb{P}_x)$ many times
 - and must return some $h \in \mathcal{H}$.
- Two sources of randomisation :
 - Randomness from dataInherently, due to the randomisation of $\operatorname{Ex}(c; \mathbb{P}_x)$, \mathcal{A} is always randomised. This randomness is from \mathbb{P}_x .
 - Randomness from algorithm After receiving data from $\operatorname{Ex}(c; \mathbb{P}_x)$, $\mathcal A$ can flip and unbiased coin and introduce further randomness into the algorithm. Let the joint distribution over \mathbb{P}_x and internal coin flips of $\mathcal A$ be $\mathbb P$.

Probably Approximately Correct Learnability: Attempt 1

Definition (PAC learning)

A concept class $\mathcal C$ is PAC learnable with hypothesis class $\mathcal H$ if there exists a learning algorithm $\mathcal A$ such that for all distributions $\mathbb P_x$, concept $c\in\mathcal C$, and $\epsilon,\delta>0$, if $\mathcal A$ is given access to $\operatorname{Ex}(c;\mathbb P_x)$ and knows $\epsilon,\delta,\mathcal A$ returns $h\in\mathcal H$ such that with probability at least $1-\delta$, over inner randomisation of $\operatorname{Ex}(c;\mathbb P_x)$ and $\mathcal A$ we have that $\mathbb P_x[h(x)\neq c(x)]\leq \epsilon$. Further, the number of calls made to $\operatorname{Ex}(c;\mathbb P_x)$ must be polynomial in $\frac1\epsilon,\frac1\delta$.

- If $\mathcal A$ runs in time poly $\left(\frac{1}{\epsilon},\frac{1}{\delta}\right)$ then $\mathcal C$ is efficiently PAC learnable.
- If $\mathcal C$ is learnable with $\mathcal H=\mathcal C$, then we say $\mathcal C$ is **proper learnable** Otherwise, it is referred to as **improper learnable** We will focus on proper PAC learnability for now.
- Number of times \mathcal{A} calls $\operatorname{Ex}(c;\mathbb{P}_{\times})$ is equal to the sample size m. So far, we have written ϵ as function of m i.e. $\epsilon(m,\delta)$ is the statistical error rate.

Understanding the definition

What are some things or questions that stand out to you about learnability in this definition ?

Efficiency

- What is one unit of time?
- What are possible reasons of inefficiency?
- What kinds of computational constraints are required on h?

Available information to A

- What does A know and what does A not know?
- What are some possible changes to $\operatorname{Ex}(c; \mathbb{P}_x)$ that can simulate real environments? How can they change a class' learnability?

Discuss in pairs

Understanding the definition

- Efficiency.
 - What is one unit of time?
 Call to Ex (c; Px) takes unit time. The algorithm is run on a turing machine.
 - What are possible reasons of inefficiency?
 Exponential sample complexity or exponential running time.
 - What kinds of computational constraints are required on h?
 h needs to be poly evaluable, otherwise trivial
- Available information
 - What does A know and what does A not know?
 Knows C but not c. Does not know P_x.
 - What are some changes to Ex (c; Px) that can simulate real environments?
 Noisy Oracle (RCN, Massart, Tsybakov), Positive/Negative only, Membership Query, Statistical Query
- It attempts to separate the two things
 - Having sufficient data
 - Being able to compute the estimator/hypothesis from the data

Learning Axis-Aligned Rectangles

- Let $\mathcal{X} = \mathbb{R}^2, \mathcal{Y} = \{+1, 0\}$
- C is the class of Axis-Aligned Rectangle Classifiers. A concept $c \in C$ labels $x \in \mathcal{X}$ positive (+1) if x lies inside the rectangle and 0 o.w.

Theorem

The concept class of axis aligned rectangles is efficiently proper PAC learnable.

Proof:

- Algorithm \mathcal{A} chooses $m=\frac{4}{\epsilon}\log\left(\frac{4}{\delta}\right)$, queries $\operatorname{Ex}\left(c;\mathbb{P}_{\mathsf{x}}\right)$ m times and outputs the smallest axis-aligned rectangle R' that contains all +ve points.
- Let R be the target rectangle. Choose 4 regions T_1 , T_2 , T_3 , T_4 along the inner sides of R such that each region has mass $\frac{\epsilon}{4}$ under \mathbb{P}_x . Note that if $\mathrm{Ex}\,(c;\mathbb{P}_x)$ returns at least one point in all of these regions with probability greater than $1-\delta$, it suffices for us.
- Let A_i be the event that $\operatorname{Ex}(c; \mathbb{P}_{\times})$ upon m calls does not return any point in T_i . Show $\mathbb{P}[\bigcup_i A_i] \leq 4 \exp\left(-\frac{m\epsilon}{4}\right)$
- Setting $m = \frac{4}{\epsilon} \log \left(\frac{4}{\delta} \right)$ completes the proof.

Probably Approximately Correct Learnability: Attempt 2

Issue: Previous definition does not account for the size of the concept class or the instance space.

- Representation scheme for concept class: $\rho: (\Sigma \cup \mathbb{R})^* \to \mathcal{C}$ is a representation scheme for \mathcal{C} . e.g. $\rho((x_1, y_1), (x_2, y_2)) = \text{axis-aligned}$ rectangle with bottom left corner at (x_1, y_1) and top right corner in (x_2, y_2) . (Unit cost to represent alphabets in Σ and numbers in \mathbb{R})
- Size of representations The function size : $(\Sigma \cup \mathbb{R})^* \to \mathbb{N}$ measures the size of a representation in $(\Sigma \cup \mathbb{R})^*$.
- Size of concept: A size of a concept is the minimum size over all representations in that representation scheme $\operatorname{size}(c) = \min_{\sigma: \rho(\sigma) = c} .\operatorname{size}(\sigma)$

What are some examples where the choice of ρ affects the size of a concept?

• Instance size: Instances $x \in \mathcal{X}$ also has an associated size e.g. memory to store. We denote \mathcal{X}_d as an instance space where all $x \in \mathcal{X}_d$ has size d.

Often these are clear from context but sometimes need further thought.

Probably Approximately Correct Learnability: Attempt II

For $d \geq 1$, let C_d be a concept class over \mathcal{X}_d . Consider instance space $\mathcal{X} = \bigcup_{d=1}^{\infty} \mathcal{X}_d$ and the corresponding concept class $C = \bigcup_{d=1}^{\infty} C_d$.

Definition (PAC learning)

A concept class $\mathcal C$ is PAC learnable with hypothesis class $\mathcal H$ if there exists a learning algorithm $\mathcal A$ such that for all d>0, all distributions $\mathbb P_x$ over $\mathcal X_d$, concept $c\in \mathcal C_d$, and $\epsilon,\delta>0$, if $\mathcal A$ is given access to $\operatorname{Ex}(c;\mathbb P_x)$ and knows $\epsilon,\delta,\operatorname{size}(c)$, and d, $\mathcal A$ returns $h\in \mathcal H$ such that with probability at least $1-\delta$, over inner randomisation of $\operatorname{Ex}(c;\mathbb P_x)$ and $\mathcal A$ we have that $\mathbb P_x[h(x)\neq c(x)]\leq \epsilon$. Further, the number of calls made to $\operatorname{Ex}(c;\mathbb P_x)$ should be polynomial in $\operatorname{size}(c),d,\frac{1}{\epsilon},\frac{1}{\delta}$.

Efficient PAC learnability: \mathcal{A} should run in time polynomial in $\frac{1}{\epsilon}, \frac{1}{\delta}$, size(c), and d. Usually size(c) is bounded by some polynomial in d and hence can be ignored.

Learning CONJUNCTIONS

Now we will see an example of PAC Learning Attempt II

- Let $\mathcal{X}_d = \{0,1\}^d$, $\mathcal{Y} = \{0,1\}$
- CONJUNCTIONS_d over d boolean variables z_1, \ldots, z_d
 - literal is a variable or its negation
 - conjunction is an AND of literals.
- A conjunction can be represented with two sets $P, N \subseteq [d]$

$$c_{P,N} = \bigwedge_{i \in P} z_i \wedge \bigwedge_{j \in N} \bar{z}_j$$

• The class of $CONJUNCTIONS_d$ is the set of all conjunctions.

CONJUNCTIONS_d = {
$$c_{P,N}|P, N \subseteq [d]$$
}

• Note an efficient representation scheme: size $c_{P,N} \leq d$

Theorem (learning conjunctions)

The concept class $C = \bigcup_{d \geq 1} CONJUNCTIONS_d$ is efficiently PAC learnable.

Proof of learnability of CONJUNCTIONS

Let c^* be the target concept.

Proof First, we state the algorithm and then prove the guarantees

Algorithm Fix $m \geq \frac{2d}{\epsilon} \log \left(\frac{2d}{\delta} \right)$ and run the following algorithm. Start with P, N = [d], [d];

- For i = 1 ... m
 - Call $\text{Ex}(c^*; \mathcal{D})$ and let (x, y) be the output.
 - If y = +1, eliminate all literals from P, N that cause $c_{P,N}(x) = 0$.
 - i.e. $P = P \setminus \{j : x_j = 0\}, N = N \setminus \{j : x_j = 1\}$
- Denote the resultant conjunction as $h = c_{P,N}$. Return h.

Convince yourself that

- the returned conjunction is the largest conjunction that is accurate on the *m* observed data samples.
- All eliminated literals are also not present in c^* .

Proof of learnability of CONJUNCTIONS (Continued)

Approximately Correct For a literal ℓ and an instance $x \in \{0,1\}^d$, let $\ell(x)$ denote the assignment of the literal ℓ on the instance x. i.e. if $\ell = z_i$ then $\ell(x) = x_i$. If $\ell = \bar{z}_i$, then $\ell(x) = 1 - x_i$.

- A literal ℓ is "bad" if $\mathbb{P}_x[c^*(x) = 1 \land \ell(x) = 0] \geq \frac{\epsilon}{2d}$.
- Note by construction, $\mathbb{P}_x[h(x) \neq c^*(x)] = \mathbb{P}_x[h(x) = 0 \land c(x) = 1].$
- Let B be the set of bad literals and h contain no literals in B. Then, $\mathbb{P}_x[h(x) = 0 \land c(x) = 1] \le \sum_{\ell \in \bar{B}} \mathbb{P}_x[h(x) = 0 \land \ell(x) = 1] \le \epsilon$

Probably Correct Now, we need to prove that h contains no bad literals. Let A_{ℓ} be the event that ℓ is not eliminated by the algorithm after m calls

- Bound $\mathbb{P}[A_\ell] \leq (1 \frac{\epsilon}{2d})^m \leq \exp(-\frac{\epsilon m}{2d})$.
- $\mathbb{P}\left[\text{at least } 1 \text{ "bad" literal remain} \right] \leq \mathbb{P}\left[\bigcup_{\ell \in B} A_\ell \right] \leq \sum_{\ell=0}^{2d} \exp(-\frac{\epsilon m}{2d})$
- Use $m \geq \frac{2d}{\epsilon} \log \left(\frac{2d}{\delta} \right)$ to show that all bad literals are eliminated with probability 1δ .