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e QOutput set @

Then Algorithm A is (€;0)-DP if

> (A(S1) € Q) < eP(A(Sy) € Q) + 0
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DP guarantee is on the pre-processed data,
not the original dataset.
Pre-processing can encode informationofeach | ________________
data record in every other data record. | : : |
Y | Question: Can we provide DP ;
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Case I: Examples of Data-dependent Pre-processing

ensionality reduction using PCA|

The principal components along which to project depends on the entire dataset

' De-duplication | | Quantisation |

Collapsing points to cluster centres, or removing near-duplicates depends on the neighbourhood

Scaling parameters depend on the mean and the variance of the dataset
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e Domain /Y function class I © {0, 1}X, Learner .A and Adversary

 Adversary chooses IS F, Ti,...,T7 € X

e Foreacht € |T]:

e First, ./4 —> ft

Problem 1\ chooses the data points strategically ,

+ Then, A g ($t7 ;7 ()

* Number of Mistakes N[ — Z {ft ZEt) £ f* ( )}

Problem 2:

observed output for all data points
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iGroup RDP

For @ > 1, if a randomised algorithm A is &(a)-RDP, then for any two
datasets S and S’ differing by m data points,

 Da (AS)|JA(S) < m"Ce(ma) |

- LR = ~
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75 - # different points (i.e. Hamming distance)

between pre-processed datasets = n

 Privacy under Euclidean distance?
'S » For each point x € S,

|zx — 7'xll, < ||lm — 7'|[,]lx]l, = O(1/n)
- Total Distance = O(I/n) n=0()
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' Fora>1,me¢& N an algonthm ﬂ IS 8( ) RDP if for AR AR £
datasets S and S’ differing at m points- Stability against arbitrary §

‘perturbation on a fixed
'number of data points

; Do (A(S)|A(S)) < m'Se(ma) e

| Fora > 1,7 > 0, an algorithm A is e(a, T)
. -SRDP if for any two datasets S and S’ satisfying
N

SIS - Sl < 7 1
=1 '
| Do (A(9)]A(S")) < e (a,T)




' Fora>1,m ¢ N an algorlthm Qf IS s( ) RDP if for

Renyl DP and Smooth Renyl DP (SRDP)

Stability against arbitrary '
‘perturbation on a fixed §

1.6 nnumber of data points
< m-e(ma) |

' Fora > 1,7 >0 an algorithm Ais e(a, T)

' ‘, for two datasets S and $' satisfying

‘Stability against bounded f,
perturbation on arbitrary
‘number of data points '

AS)) <ela,r)y




Most DP mechanisms satisfy Smooth-RDP

Nota-

tion Meaning Mechanism Assumptions RDP SRDP
f Mg [ is L-Lipschitz 0‘;2 aL;A"; e’
- f
Output function ML f is L-Lipschitz € g—;&:
Score . . . LT
Q function ME QQ is L-Lipschitz 3 AgE
Loss
14 function Acp ¢ is L-Lipschitz and p-smooth, o = Ls—nﬁ 20€” 0‘“22 522 i
¢ is L-Lipschitz and p-smooth, 0 = Q(LVT/en),
Number of : : : : 2_2 2 2 2 2
T , , AsGD—samp inverse point-wise divergence -y, a’e oap”T ey
1teration . JT L2T 2, 2 2172
1 < a<minq ,EQnQIOgLﬁ
r . ¢ is convex, L-Lipschitz and pu-smooth,
carning . = 8v2lognnl "o — O(1/na?), maximum ae’ at?p?nlog(n—rr+2)
g rate ASGDiter ’ evn 7 (1/na”), max > 2(n—rr+1)L2% logn

divergence k., Ly/2a(a—1) <o

Table 1: RDP and SRDP parameters of DP mechanisms.



Sensitivity of pre-processing algorithms

Original Pre-processed
dataset dataset

Il
5 —_—s | oS
/
< U
ﬁ




Sensitivity of pre-processing algorithms

Original Pre-processed
dataset dataset

Il
5 — S
. / .
. 7[
—> | 7§

L, sensitivity = max max ||z¢(x) — m(x)||,
xeS 8,8




Sensitivity of pre-processing algorithms

Original Pre-processed

dataset dataset
L, sensitivity = max max ||z¢(x) — me{x)||,

_>
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Main Result

Model

Original data Pre-processing
(e.g. PCA dim reduction)

DP Tralning
N/ — ,

The training algorithm is

(o, e(a))-RDP and

Assumption 1: ?"
The pre-processing algorithm has  }

L, sensitivity A, and

The pre-processed DP pipeline is (&, €)-RDP, where
— (200, Ao A 200)).
= 5oy (620, 8aA) + £(200)
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Proof Sketch

o Use Triangle Inequality for Renyi DP
Original Pre-processed

dataset dataset
Synthesised

dataset

Proposition 11 (Weak triangle inequality). Let P,Q, R be
distributions on R. Then for a« > 1 and for any p,q > 1
satisfying 1/p + 1/q = 1 it holds that

—1
Da(PIQ) < “—H2 D, (P|IR) + Dyta-1/ (RIQ).
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Quantization Mean imputation PCA Standard Scaling
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* S« ¢
» Forte [T]:
e If S contains x # 1 , output x
* Else, output O
* Add new sample to $ with probability o

But this completely leaks the privacy of all points in 3.
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- e

D)




Main Result



Main Result




Main Result




Main Result




Main Result




s~snhiin A S o - - & - ¥ A " = < - Ta > ~ AP T - “ - N Y (s DA A " = < - a ¥ oy T = 2 - ' S S gl - 2 - a Y e = S g - - - ' ~AE T 0
P PRS- IS O O B =3 N SO R Py - RS T D PIREP T, RO R T PINEYC, SSOR - o g la- 9 oaps RS D PIIRRYC N RP NITe ) D PIIRRY L N RS Y D PINEP TR, ORI e S O Y RS D P IR RO R o —Tsa g D PTG
g N

An algorithm A\ is ff-concentrated, if dx € {0,1}, such that if
PAA(L,L,....,L)=0Cx,...,x))>1—-F

2 S R S Oes e Rs ; M Gl siie Laneis o ; o Bl 0 Tl BasI A il s AP ’ A ERisia L e e oa ; R <sig L e o g PRSOORCDN e ' s g ATk il ai g Az e g
.3 == - als = - /2 — == - _ - /. — 02 2 = - _ - /e o= o= _ oS s - _ - /. _ oSS s _ - /. . _ PEC - _ - L = e P _ P _ - > _ PEC Y ) e e, S _ e Se _ = 5> _ o Gla _ ==
(-2 - DS - B =T e 3 CEAFR NI V3 (e R e pro o Jaal o s AU W YRV 3 CAFW -2 - —an 2 ol A0 S A W PRV %, AT TN VeV vF (. FITNTV . DX TN T 4 DR YW YRRV %, N AT - T RO T e O K Vv T VW IOV N AT - T T ey i e el o o d R oy G ool S S d o ahe ST W AP
o : ; - y
& 0
)
. ¢
& '
A nfd
v
)
A m )
; ;
)
y /)
' y
\
4 '
".

For any €, 6 > 0, for any 0.1-concentrated A, there
exists an adversary, such that

~ (logT
For, T <exp(1/166), E[M]| = ( Ogg /5>

~ (1
For, T > exp(1/166), E[M] = (_>



E[MA] —@— Lowerbound
== = [DP-SOA

- , —a— Offline learning
a I n esu t f =P - Name & Shame

exp(1/6)

“Number of samples T |




E[MA] —@— Lowerbound
== = DP-SOA

- " —a— Offline learning
a I n esu ‘ == - Name & Shame

O(1/8) t—P—- P — P — P

Proof technique:
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| are the sequences containing ‘0’ at least once before t = 7/2

are the sequences containing only ‘1’s until t = 7/2
and containing ‘0’ at least once when T/2 <t < T

11

P(1)+p(M)<5ar0 = p( 1 )sge+s o (L) <ju+;

3 ) : : : .
£ |]3>< I ) < Zq0+5, reiterate in the first half and set g, := P( I )

3 5 . . L J—
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3 0
If we continue, we get g, | < qu + > — ¢, <20
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