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Differential Privacy (DP)

• The gold standard for formalizing privacy guarantees​

• Looking at the output, can't tell if a data point was in the dataset or not
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• (ε, δ)-DP with privacy budget ε ≥ 0 (lower means more private) and 
additive error δ ∈ [0, 1] bounds how much the output distribution can 
diverge on adjacent datasets
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SOTA DP deep learning relies on transfer learning

Assumptions:

• use backbones pretrained on large 
public datasets

• downstream data is private

Previous work focuses on downstream 
datasets that are:

• large

• very similar to the pretraining dataset

3De, S., Berrada, L., Hayes, J., Smith, S. L., & Balle, B. (2022). Unlocking high-accuracy differentially private image classification through scale. arXiv:2204.13650.
Tramèr, F., Kamath, G., & Carlini, N. (2022). Considerations for Differentially Private Learning with Large-Scale Public Pretraining. arXiv:2212.06470.



Image Classification - Transfer Learning

Backbone
Pretrained on ImageNet 21K

Head
Initialized to 0

Logits

• BiT-M-R50x1 (R-50)
(23.5M parameters)

• Vision Transformer 
VIT-Base-16 (VIT-B)
(85.8M parameters)

Linear Layer
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Which parameters are fine-tuned?
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Which parameters are fine-tuned?

Logits

All

Logits

FiLM Adaptors (number of parameters < 0.1% of All)

Logits
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Tradeoffs in this work
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Privacy Utility

Number of examples per class
(shots)

Data distribution overlap (DDO)
[between pretraining and downstream datasets]

Learnable parameter
configurations

(Head/FiLM/All)



Effect of Shots and Privacy
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• At low shot, accuracy degrades significantly with increasing privacy level
• High DDO: 100 shots are required for high accuracy (90%)



Effect of Shots and Privacy
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• At low shot, accuracy degrades significantly with increasing privacy level
• High DDO: 100 shots are required for high accuracy (90%)
• Low DDO: More data is required to close gap to non-private performance



How much data is required to match non-private 
accuracy?
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• 32x data required at ε=1 to match non-private accuracy when shots = 5



Comparing different configurations

• In General: FiLM is at least as good or better as All and Head
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Comparing different configurations

• In General: FiLM is at least as good or better as All and Head
• Low DDO: Head falls short
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Average accuracy of 19 diverse VTAB datasets
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• Non-private: All > FiLM > Head (Gray)
• Private FiLM >= Head > All (colored bars)



Thanks for listening 

• Paper: arXiv:2302.01190

• Code: https://github.com/cambridge-mlg/dp-few-shot

• Check out our posters today:

• This work: 
On the Efficacy of Differentially Private Few-shot Image 
Classification

• Learnings applied to federated learning: 
Differentially Private Federated Few-shot Image 
Classification
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