On the Efficacy of Differentially Private Few-shot Image Classification

Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Marlon Tobaben*1, Aliaksandra Shysheya*2, John Bronskill2, Andrew Paverd3,

Shruti Tople³, Santiago Zanella-Beguelin³, Richard E. Turner², Antti Honkela¹

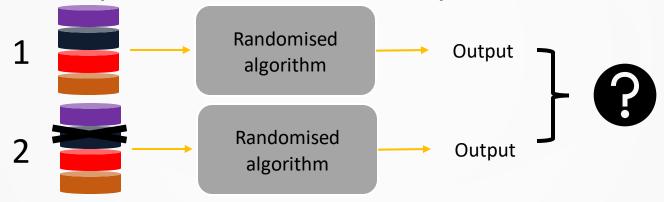
[2]

[3]

Paper: arXiv:2302.01190, Code: https://github.com/cambridge-mlg/dp-few-shot

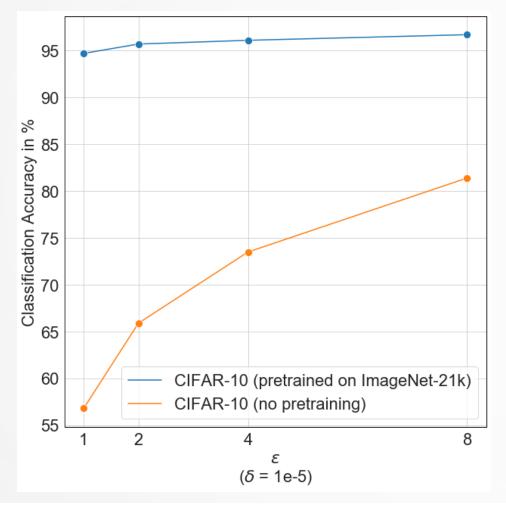
Differential Privacy (DP)

- The gold standard for formalizing privacy guarantees
- Looking at the output, can't tell if a data point was in the dataset or not



• (ε, δ) -DP with privacy budget $\varepsilon \ge 0$ (lower means more private) and additive error $\delta \in [0, 1]$ bounds how much the output distribution can diverge on adjacent datasets

SOTA DP deep learning relies on transfer learning



Assumptions:

- use backbones pretrained on large public datasets
- downstream data is private

Previous work focuses on downstream datasets that are:

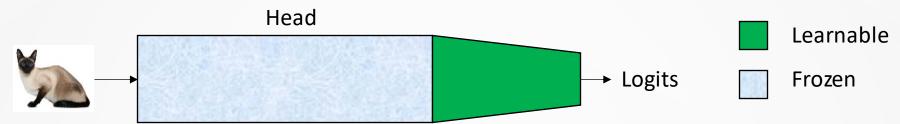
- large
- very similar to the pretraining dataset

Image Classification - Transfer Learning

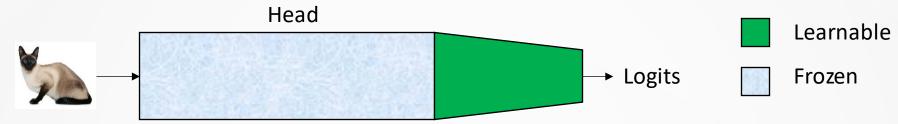
- BiT-M-R50x1 (R-50)
 (23.5M parameters)
- Linear Layer

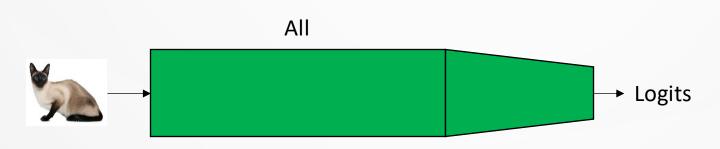
Vision Transformer
 VIT-Base-16 (VIT-B)
 (85.8M parameters)

Which parameters are fine-tuned?

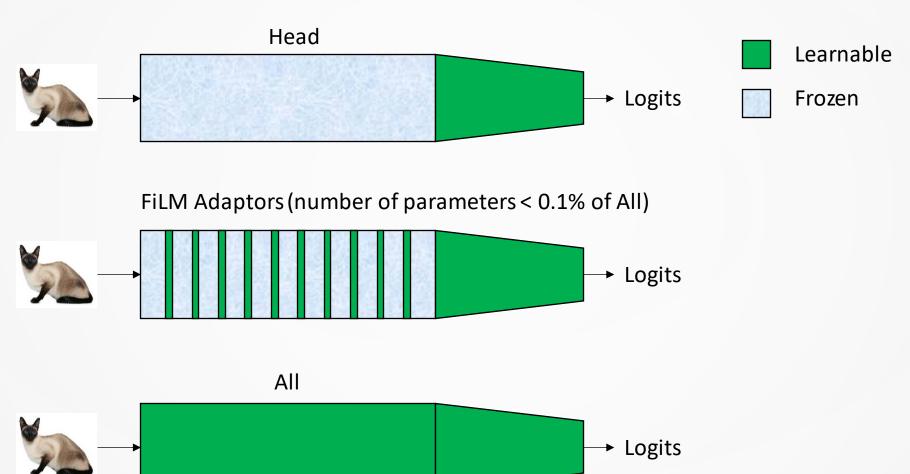


Which parameters are fine-tuned?



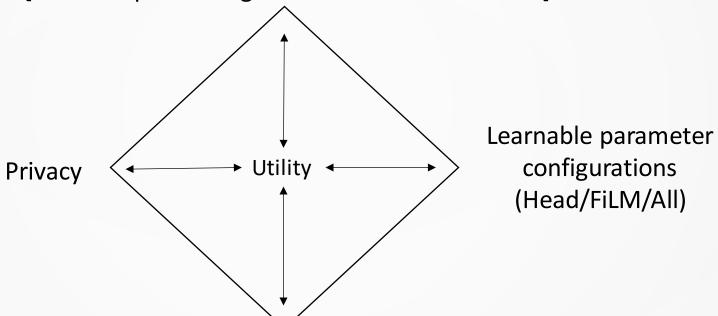


Which parameters are fine-tuned?



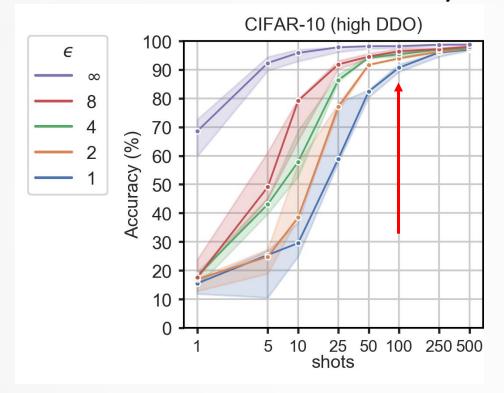
Tradeoffs in this work

Data distribution overlap (DDO) [between pretraining and downstream datasets]



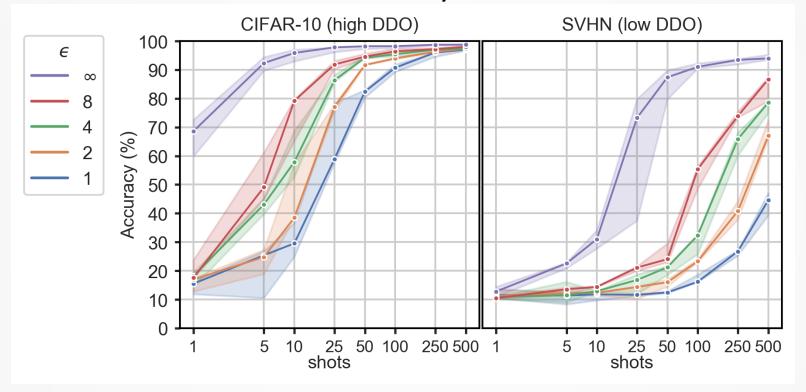
Number of examples per class (shots)

Effect of Shots and Privacy



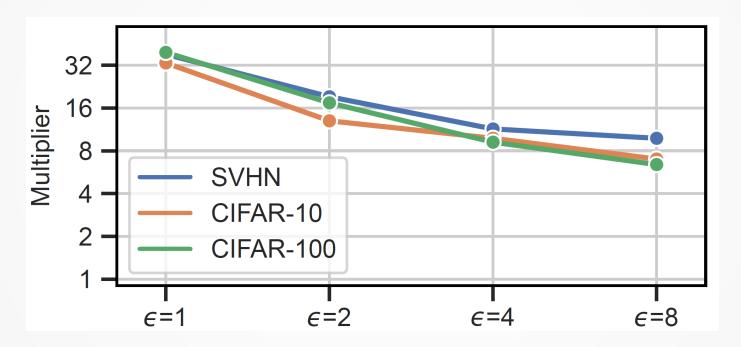
- At low shot, accuracy degrades significantly with increasing privacy level
- High DDO: 100 shots are required for high accuracy (90%)

Effect of Shots and Privacy



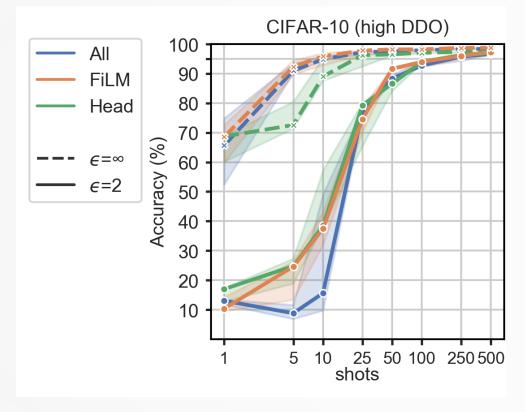
- At low shot, accuracy degrades significantly with increasing privacy level
- High DDO: 100 shots are required for high accuracy (90%)
- Low DDO: More data is required to close gap to non-private performance

How much data is required to match non-private accuracy?



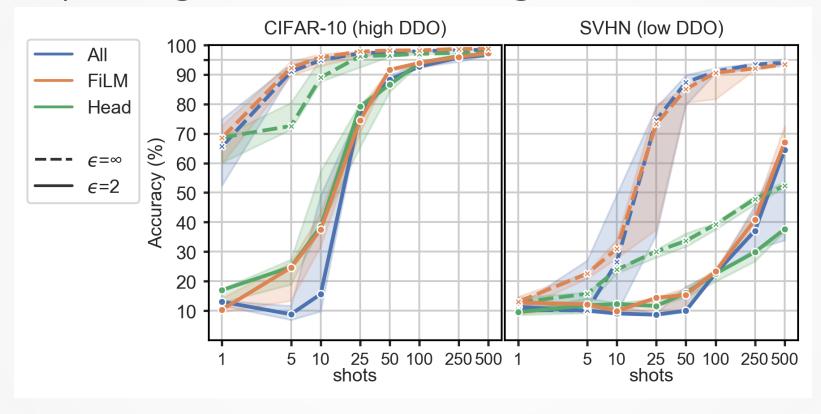
• 32x data required at $\varepsilon=1$ to match non-private accuracy when shots = 5

Comparing different configurations



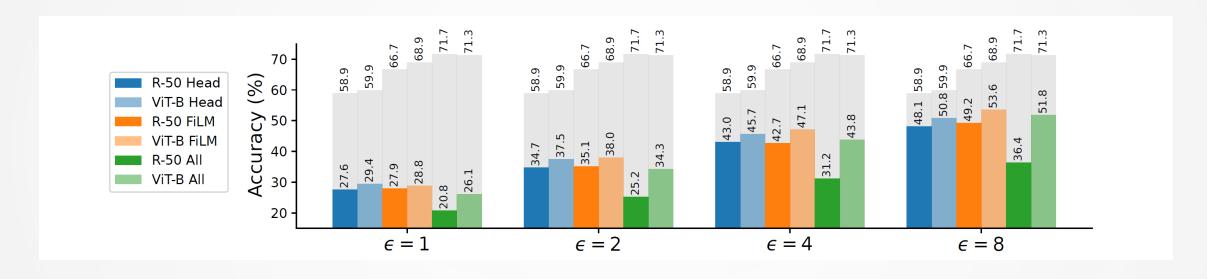
In General: FiLM is at least as good or better as All and Head

Comparing different configurations



- In General: FiLM is at least as good or better as All and Head
- Low DDO: Head falls short

Average accuracy of 19 diverse VTAB datasets



- Non-private: All > FiLM > Head (Gray)
- Private FiLM >= Head > All (colored bars)

Thanks for listening

- Paper: arXiv:2302.01190
- Code: https://github.com/cambridge-mlg/dp-few-shot
- Check out our posters today:
 - This work:
 On the Efficacy of Differentially Private Few-shot Image
 Classification
 - Learnings applied to federated learning:
 Differentially Private Federated Few-shot Image
 Classification

