Differentially Private Learning

An algorithm A is said to be (ϵ, δ)-differentially private (DP) if

$$P(A(S_1) \in Q) \leq \exp(\epsilon)P(A(S_2) \in Q) + \delta$$

for all neighbouring datasets S_1, S_2 and output sets Q.

Existing Results: Sample complexity of DP algorithms are dimension-dependent in the worst case.

In Semi-Private learning [1], the learner accesses

- Private Labelled dataset,
- Public Unlabelled dataset from nearby distribution

This work: Design Semi-Private learner for linear half-spaces that

1. Is Computationally Efficient
2. Admits Dimension Independent sample complexity
3. Performs well in Challenging Practical Applications

Theoretical Results

We exploit two properties of data distribution μ (covariance Σ)

- (A) Large Margin: μ admits a classifier w^* with margin γ
- (A2) Low Rank: Large Proj. of w^* on top-k components of Σ.

PILLAR Unlabelled dataset (X_U, ϵ), Labelled dataset (X_L, Y_L, k),

1. $\Sigma \leftarrow \sum_{x \in S_l} xx^T, A_k \leftarrow$ top-k principal components of Σ.
2. $X_L^{(proj)} \leftarrow$ Project X_L on A_k.
3. $\hat{w}_{\epsilon, \delta} \leftarrow$ Run Noisy-SGD on $(X_L^{(proj)}, Y_L)$ with privacy parameters ϵ, δ.

Guarantees on $\hat{w}_{\epsilon, \delta}$

- **Privacy**: $\hat{w}_{\epsilon, \delta}$ is (ϵ, δ)-DP.
- **Accuracy**: For $\alpha, \beta \geq 0$, $|X_U| = O\left(\frac{1}{\epsilon^2}\right)$ and $|X_L| = O\left(\frac{\sqrt{n}}{\alpha \epsilon}\right)$,

$$P[\text{Error}(\hat{w}_{\epsilon, \delta}) \leq \alpha] \geq 1 - \beta$$

Experiments I: Reducing Dimensions

- **Takeaway**:
 - **Strict privacy ($\epsilon = 0.1$)**: Dimension \downarrow \Rightarrow Accuracy \uparrow.
 - **Without privacy ($\epsilon = \infty$)**: Dimension \downarrow \Rightarrow Accuracy \downarrow.

Experiments II: PILLAR outperforms other Algorithms across datasets

Comparison across datasets and pre-training for $\epsilon = 0.1$.

Experiments III: Distribution Shift

- Public and private data may come from different distributions.
- **PILLAR**’s performance is robust to using CIFAR-10v1 for public data and CIFAR10/100 for private data.