

Building trustworthy ML The role of label quality and availability

Alexandru Țifrea Research Scientist, Google DeepMind

Amartya Sanyal

Tenure Track Assistant Professor, Department of Computer Science, University of Copenhagen

Introduction

An overloaded term

An overloaded term

Fairness

An overloaded term

Fairness

The New Hork Times

A.I. Could Worsen Health Disparities

In a health system riddled with inequity, we risk making dangerous biases automated and invisible.

OM SIMONITE BUSINESS AUG 21. 2017 9:00 AM

Machines Taught by Photos Learn a Sexist View of Women

Algorithms showed a tendency to associate women with shopping and men with shooting.

Whether Machine Learning Algorithms have disproportionately worse impact on some groups of people than others

An overloaded term

Fairness

Privacy

The New Hork Times

A.I. Could Worsen Health Disparities

In a health system riddled with inequity, we risk making dangerous biases automated and invisible.

TOM SIMONITE BUSINESS AUG 21. 2017 9:00 AM

Machines Taught by Photos Learn a Sexist View of Women

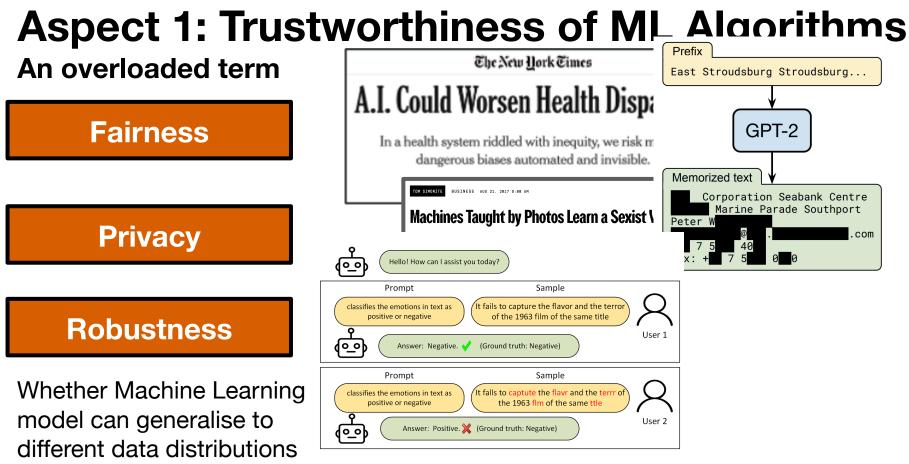
Algorithms showed a tendency to associate women with shopping and men with shooting.

Whether Machine Learning algorithms leak *personal* (training) data

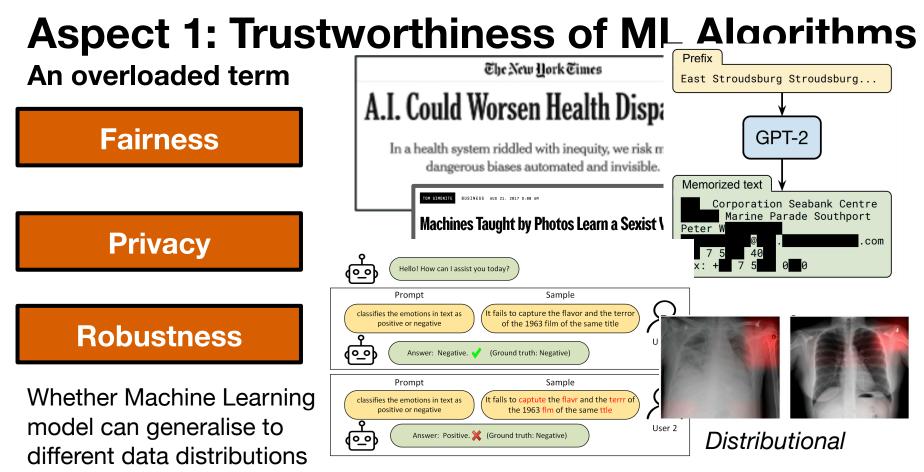
Robustness

Robustness

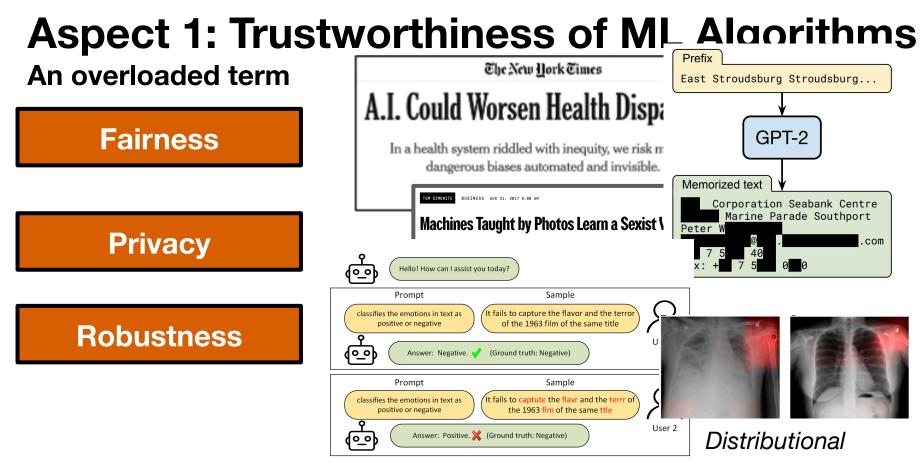
Whether Machine Learning model can generalise to different data distributions



Adversarial



3 Adversarial



3 Adversarial

Two problems with data in ML

Two problems with data in ML

• Unlabelled data is significantly more abundant than Labelled data.

Two problems with data in ML

- Unlabelled data is significantly more abundant than Labelled data.
- Label noise is ubiquitous in real world data

Two problems with data in ML

- Unlabelled data is significantly more abundant than Labelled data.
- Label noise is ubiquitous in real world data

Dataset	Modality	% error
MNIST	image	0.15
CIFAR-10	image	0.54
CIFAR-100	image	5.85
Caltech-256 [†]	image	1.54
ImageNet*	image	5.83
QuickDraw [†]	image	10.12
20news	text	1.09
IMDB	text	2.90
Amazon Reviews [†]	text	3.90
AudioSet	audio	1.35

Two problems with data in ML

- Unlabelled data is significantly more abundant than Labelled data.
- Label noise is ubiquitous in real world data

In this tutorial, we will look at

Dataset	Modality	% error
MNIST	image	0.15
CIFAR-10	image	0.54
CIFAR-100	image	5.85
Caltech-256 [†]	image	1.54
ImageNet*	image	5.83
$QuickDraw^{\dagger}$	image	10.12
20news	text	1.09
IMDB	text	2.90
Amazon Reviews [†]	text	3.90
AudioSet	audio	1.35

Two problems with data in ML	Dataset	Modality	% error
 Unlabelled data is significantly more abundant than Labelled data. 	MNIST CIFAR-10 CIFAR-100 Caltech-256 [†]	image image image image	0.15 0.54 5.85 1.54
 Label noise is ubiquitous in real world data 	ImageNet [*] QuickDraw [†] 20news IMDB	image image text text	5.83 10.12 1.09 2.90
In this tutorial, we will look at	Amazon Reviews [†] AudioSet	text audio	3.90 1.35

How **availability and quality of labels** (and data) specifically impact **Fairness, Privacy, and Robustness** of ML Algorithms

• Introduction

• Introduction

• Fairness in Machine Learning

• Introduction

• Fairness in Machine Learning

- Partial group labels
- No group labels
- Low-label regime

• Introduction

• Fairness in Machine Learning

• Privacy in Machine Learning

- Partial group labels
- No group labels
- Low-label regime

• Introduction

• Fairness in Machine Learning

• Privacy in Machine Learning

- Partial group labels
- No group labels
- Low-label regime
- Privacy and Disparate Impact
- Good data incurs less cost

• Introduction

• Fairness in Machine Learning

• Privacy in Machine Learning

- Partial group labels
- No group labels
- Low-label regime
- Privacy and Disparate Impact
- Good data incurs less cost
- Robustness in Machine Learning

• Introduction

• Fairness in Machine Learning

• Privacy in Machine Learning

• Robustness in Machine Learning

- Partial group labels
- No group labels
- Low-label regime
- Privacy and Disparate Impact
- Good data incurs less cost
- Adversarial Robustness
- Distributional Generalisation
- Out-of-distribution detection

• Introduction

• Fairness in Machine Learning

• Privacy in Machine Learning

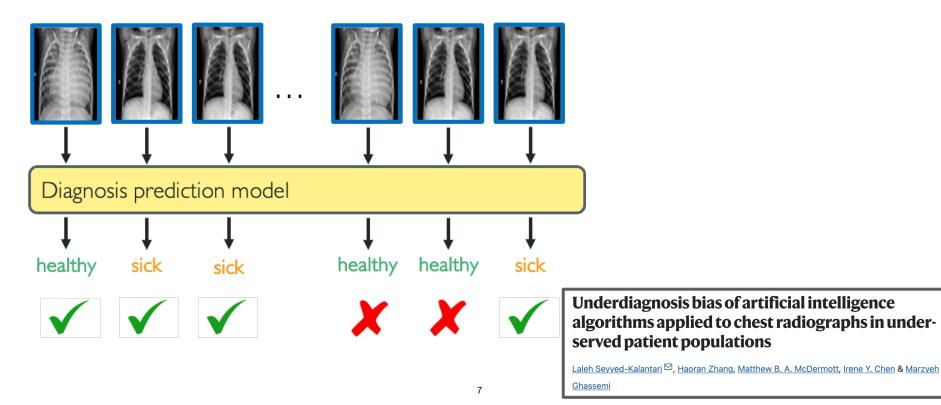
• Robustness in Machine Learning

Outlook and Future Direction

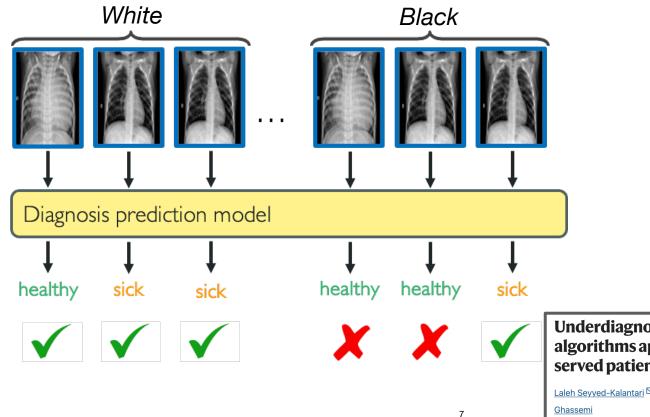
- Partial group labels
- No group labels
- Low-label regime
- Privacy and Disparate Impact
- Good data incurs less cost
- Adversarial Robustness
- Distributional Generalisation
- Out-of-distribution detection

Fairness in Machine Learning

Example of ML model unfairness



Example of ML model unfairness

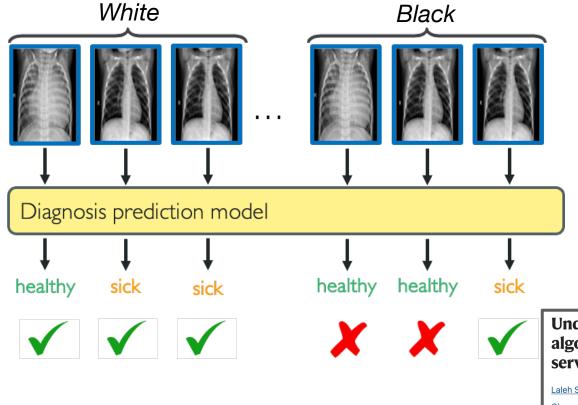


Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in underserved patient populations

Laleh Seyyed-Kalantari , Haoran Zhang, Matthew B. A. McDermott, Irene Y. Chen & Marzyeh

Example of ML model unfairness

7



False positive rate:

FPR=P[predicted healthy | actually sick]

FPR[White] = 0.16

FPR[Black] = 0.27

FPR gap = 0.11

The model is accurate but not fair!

Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in underserved patient populations

Laleh Seyyed-Kalantari [⊠], Haoran Zhang, Matthew B. A. McDermott, Irene Y. Chen & Marzyeh Ghassemi

Prediction problem: $\hat{Y} = \hat{f}(X)$ with categorical or continuous labels

Prediction problem: $\hat{Y} = \hat{f}(X)$ with categorical or continuous labels

Individual fairness: $d_y\left(\hat{f}\left(x_1
ight),\,\hat{f}\left(x_2
ight)
ight) < C d_x\left(x_1,\,x_2
ight)$

Fairness Through Awareness

Cynthia Dwork* Moritz Hardt[†] Toniann Pitassi[‡] Omer Reingold[§] Richard Zemel[¶] 'treating similar individuals similarly'

Prediction problem: $\hat{Y} = \hat{f}(X)$ with categorical or continuous labels

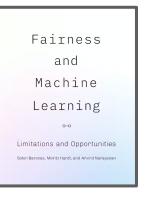
Individual fairness:
$$d_y\left(\hat{f}\left(x_1
ight),\,\hat{f}\left(x_2
ight)
ight) < C d_x\left(x_1,\,x_2
ight)$$

Fairness Through Awareness

Cynthia Dwork* Moritz Hardt[†] Toniann Pitassi[‡] Omer Reingold[§] Richard Zemel[¶]

'treating similar individuals similarly'

Group fairness: Three broad categories of fairness notions



Prediction problem: $\hat{Y} = \hat{f}(X)$ with categorical or continuous labels

Individual fairness:
$$d_y\left(\hat{f}\left(x_1
ight),\,\hat{f}\left(x_2
ight)
ight) < C d_x\left(x_1,\,x_2
ight)$$

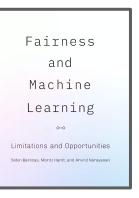
Fairness Through Awareness

Cynthia Dwork* Moritz Hardt[†] Toniann Pitassi[‡] Omer Reingold[§] Richard Zemel[¶]

'treating similar individuals similarly'

Group fairness: Three broad categories of fairness notions

• Equal acceptance rates e.g. statistical parity $\mathbb{P}(\hat{Y}|A = \text{White}) = \mathbb{P}(\hat{Y}|A = \text{Black})$



Formal definitions of fairness for prediction

Prediction problem: $\hat{Y} = \hat{f}(X)$ with categorical or continuous labels

Individual fairness:
$$d_y\left(\hat{f}\left(x_1
ight),\,\hat{f}\left(x_2
ight)
ight) < C d_x\left(x_1,\,x_2
ight)$$

Fairness Through Awareness

 $\begin{array}{cc} Cynthia \ Dwork^* & Moritz \ Hardt^{\dagger} & Toniann \ Pitassi^{\ddagger} & Omer \ Reingold^{\S} \\ Richard \ Zemel^{\P} \end{array}$

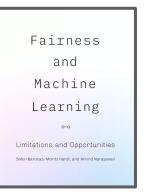
'treating similar individuals similarly'

Group fairness: Three broad categories of fairness notions

- Equal acceptance rates e.g. statistical parity
- Equal error rates e.g. Equal Opportunity

$$\mathbb{P}(\hat{Y}|A= ext{White})=\mathbb{P}(\hat{Y}|A= ext{Black})$$

$$FPR(A = White) = FPR(A = Black)$$



Formal definitions of fairness for prediction

Prediction problem: $\hat{Y} = \hat{f}(X)$ with categorical or continuous labels

Individual fairness:
$$d_y\left(\hat{f}\left(x_1
ight),\,\hat{f}\left(x_2
ight)
ight) < C d_x\left(x_1,\,x_2
ight)$$

Fairness Through Awareness

Cynthia Dwork* Moritz Hardt[†] Toniann Pitassi[‡] Omer Reingold[§] Richard Zemel[¶]

'treating similar individuals similarly'

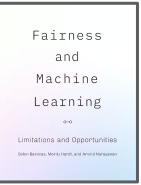
Group fairness: Three broad categories of fairness notions

- Equal acceptance rates e.g. statistical parity
- Equal error rates e.g. Equal Opportunity

Equal calibration

 $\mathbb{P}(\hat{Y}|A = ext{White}) = \mathbb{P}(\hat{Y}|A = ext{Black})$

$$\mathrm{FPR}(A = \mathrm{White}) = \mathrm{FPR}(A = \mathrm{Black})$$



Formal definitions of fairness for prediction

Prediction problem: $\hat{Y} = \hat{f}(X)$ with categorical or continuous labels

Individual fairness:
$$d_y\left(\hat{f}\left(x_1
ight),\,\hat{f}\left(x_2
ight)
ight) < C d_x\left(x_1,\,x_2
ight)$$

Fairness Through Awareness

 $\begin{array}{cc} Cynthia \ Dwork^* & Moritz \ Hardt^{\dagger} & Toniann \ Pitassi^{\ddagger} & Omer \ Reingold^{\S} \\ Richard \ Zemel^{\P} \end{array}$

'treating similar individuals similarly'

Group fairness: Three broad categories of fairness notions

- Equal acceptance rates e.g. statistical parity
- Equal error rates e.g. Equal Opportunity
- FPR(A = White) = FPR(A = Black)

 $\mathbb{P}(\hat{Y}|A = \text{White}) = \mathbb{P}(\hat{Y}|A = \text{Black})$

• Equal calibration

Remark: Different ML problems (e.g. generative ML) employ similar fairness definitions.

Fairness-error trade-off

State-of-the-art prediction models are often unfair

The New Hork Times

A.I. Could Worsen Health Disparities

In a health system riddled with inequity, we risk making dangerous biases automated and invisible.

TOM SIMONITE BUSINESS AUG 21, 2017 9:00 AM

Machines Taught by Photos Learn a Sexist View of Women

Algorithms showed a tendency to associate women with shopping and men with shooting.

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

Study reveals why AI models that analyze medical images can be biased

These models, which can predict a patient's race, gender, and age, seem to use those traits as shortcuts when making medical diagnoses.

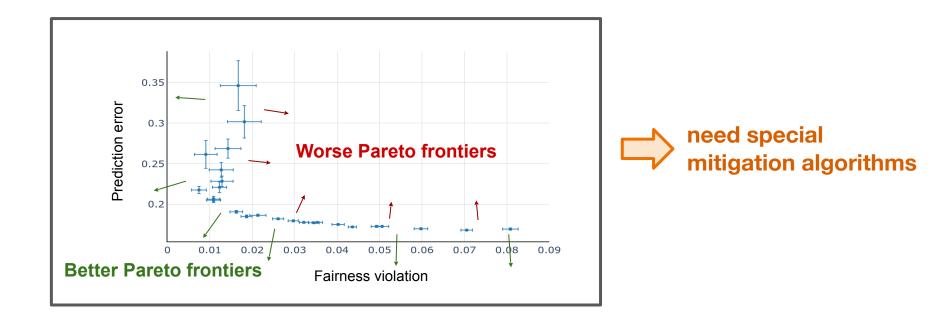
Fairness-error trade-off

State-of-the-art prediction models are often unfair

PROPUBLICA

Trivial prediction models (e.g. random guessing) can achieve perfect fairness e.g. for binary classification and two groups $P\left(\hat{Y}=1|A=0\right)=P\left(\hat{Y}=1|A=1\right)=0.5$

Fairness-error Pareto frontier



 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY} \text{ (potentially unfair model)}$

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$ (potentially unfair model)

1) <u>Pre</u>-processing mitigations

High-level idea: *Change the training data* Inspired by principle of "Fairness Through Unawareness"

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$ (potentially unfair model)

1) <u>Pre</u>-processing mitigations

High-level idea: *Change the training data* Inspired by principle of "Fairness Through Unawareness"

Examples:

- feature selection
- fair representation learning
- importance sampling

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY} \text{ (potentially unfair model)}$

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(x_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$ (potentially unfair model)

2) <u>In</u>-processing mitigations

High-level idea: *Change the training algorithm* Employ ideas from multi-objective learning

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY} \text{ (potentially unfair model)}$

2) <u>In</u>-processing mitigations

High-level idea: *Change the training algorithm* Employ ideas from multi-objective learning

e.g.
$$\arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(f; \mathcal{D}_{sensitive})$$
 with $\mathcal{D}_{sensitive} = \{(\boldsymbol{x}_i, y_i, a_i)\}_{i=1}^m$

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(x_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$ (potentially unfair model)

2) <u>In</u>-processing mitigations

High-level idea: *Change the training algorithm* Employ ideas from multi-objective learning

e.g. $\arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(f; \mathcal{D}_{sensitive})$ with $\mathcal{D}_{sensitive} = \{(\boldsymbol{x}_i, y_i, a_i)\}_{i=1}^m$

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred})$ $\mathcal{D}_{pred} = \{(x_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$ (potentially unfair model)

2) <u>In</u>-processing mitigations

High-level idea: *Change the training algorithm* Employ ideas from multi-objective learning

e.g. $\arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(f; \mathcal{D}_{sensitive})$ with $\mathcal{D}_{sensitive} = \{(\boldsymbol{x}_i, y_i, a_i)\}_{i=1}^m$ unfairness penalty

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}) \qquad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$ (potentially unfair model)

2) <u>In</u>-processing mitigations

High-level idea: *Change the training algorithm* Employ ideas from multi-objective learning

e.g. $\arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(f; \mathcal{D}_{sensitive})$ with $\mathcal{D}_{sensitive} = \{(\boldsymbol{x}_i, y_i, a_i)\}_{i=1}^m$

unfairness penalty

Examples:

- regularized learning
- constrained learning

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY} \text{ (potentially unfair model)}$

 $\operatorname{OPT}_{\operatorname{base}} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{\operatorname{pred}}), \quad \mathcal{D}_{\operatorname{pred}} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY} \text{ (potentially unfair model)}$

3) **Post**-processing mitigations

High-level idea: Change the outputs of a pre-trained model

 $\operatorname{OPT}_{\operatorname{base}} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{\operatorname{pred}}), \quad \mathcal{D}_{\operatorname{pred}} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY} \text{ (potentially unfair model)}$

3) **Post**-processing mitigations

High-level idea: Change the outputs of a pre-trained model

e.g. group-dependent transformation of outputs:

$$\left(\hat{Y},\,A
ight)
ightarrow T_{A}\left(\hat{Y}
ight) \in \{0,\,1\}$$

 $\operatorname{OPT}_{\operatorname{base}} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{\operatorname{pred}}), \quad \mathcal{D}_{\operatorname{pred}} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY} \text{ (potentially unfair model)}$

3) **<u>Post</u>**-processing mitigations

High-level idea: *Change the outputs of a pre-trained model* e.g. group-dependent transformation of outputs:

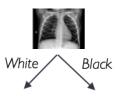
$$\left(\hat{Y},\,A
ight)
ightarrow T_{A}\left(\hat{Y}
ight) \in \{0,\,1\}$$

 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY} \text{ (potentially unfair model)}$

3) **<u>Post</u>**-processing mitigations

High-level idea: *Change the outputs of a pre-trained model* e.g. group-dependent transformation of outputs:

$$\left(\hat{Y},\,A
ight)
ightarrow T_{A}\left(\hat{Y}
ight) \in \{0,\,1\}$$

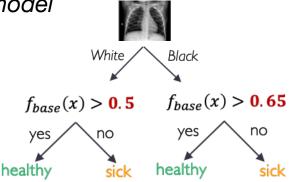


 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$ (potentially unfair model)

3) **<u>Post</u>**-processing mitigations

High-level idea: Change the outputs of a pre-trained model e.g. group-dependent transformation of outputs: $(\hat{q}, y) = -(\hat{q})$

$$\left(\hat{Y},\,A
ight)
ightarrow T_{A}\left(\hat{Y}
ight) \in \{0,\,1\}$$



 $OPT_{base} : \arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}), \quad \mathcal{D}_{pred} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \sim \mathbb{P}_{XY}$ (potentially unfair model)

White

healthy

Black

3) Post-processing mitigations

High-level idea: Change the outputs of a pre-trained model e.g. group-dependent transformation of outputs: $\left(\hat{Y},\,A
ight)
ightarrow T_{A}\left(\hat{Y}
ight) \in \left\{ 0,\,1
ight\}$ $f_{base}(x) > 0.5$ $f_{base}(x) > 0.65$

Examples:

- group-dependent post-hoc transformations
- group-agnostic transformations

e.g. fair predictions irrespective of person's willingness to provide sensitive attribute

Pre-, in-, post-processing mitigations need training data with group labels.

Pre-, in-, post-processing mitigations need training data with group labels.

Issue #1: Group labels are difficult to collect.

e.g. group labels are often sensitive attributes (e.g. gender, ethnicity, age etc)

Pre-, in-, post-processing mitigations need training data with group labels.

Issue #1: Group labels are difficult to collect.

e.g. group labels are often sensitive attributes (e.g. gender, ethnicity, age etc)

What happens when group labels are scarce?

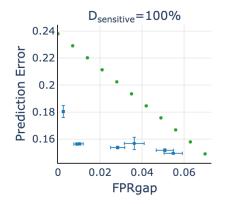
Pre-, in-, post-processing mitigations need training data with group labels.

Issue #1: Group labels are difficult to collect.

e.g. group labels are often sensitive attributes (e.g. gender, ethnicity, age etc)

What happens when group labels are scarce?

Naive baseline: "predict according to pre-trained model with probability p, and predict 0 with probability (1-p)" **In-processing mitigation:** state-of-the-art MinDiff method



Dataset: Adult Y = income; A = gender

Figure source: https://arxiv.org/abs/2312.02592

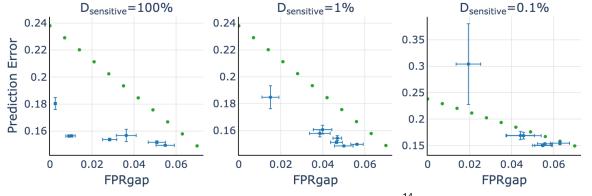
Pre-, in-, post-processing mitigations need training data with group labels.

Issue #1: Group labels are difficult to collect.

e.g. group labels are often sensitive attributes (e.g. gender, ethnicity, age etc)

What happens when group labels are scarce?

Naive baseline: "predict according to pre-trained model with probability p, and predict 0 with probability (1-p)" **In-processing mitigation:** state-of-the-art MinDiff method



Dataset: Adult Y = income; A = gender

Figure source: https://arxiv.org/abs/2312.02592

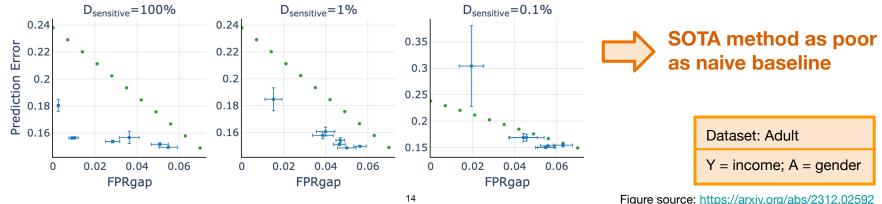
Pre-, in-, post-processing mitigations need training data with group labels.

Issue #1: Group labels are difficult to collect.

e.g. group labels are often sensitive attributes (e.g. gender, ethnicity, age etc)

What happens when group labels are scarce?

Naive baseline: "predict according to pre-trained model with probability p, and predict 0 with probability (1-p)" In-processing mitigation: state-of-the-art MinDiff method



Labeled data can be expensive to collect.

Labeled data can be expensive to collect.

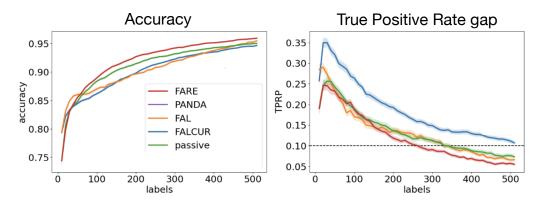
Issue #2: Class label scarcity can amplify unfairness.

Labeled data can be expensive to collect.

Issue #2: Class label scarcity can amplify unfairness.

What happens in the low-label regime?

e.g. fair active learning strategies



Dataset: Communities & Crime

Y = crime rate; A = ethnicity

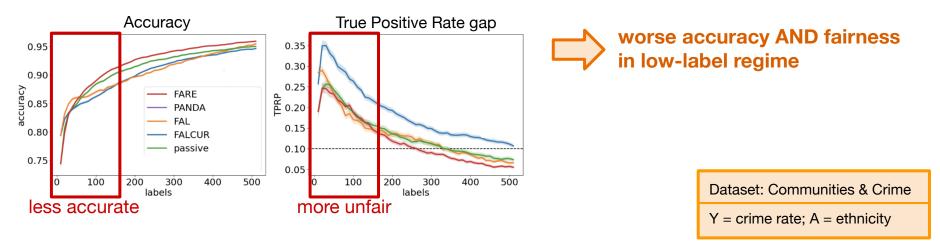
Figure source: https://arxiv.org/pdf/2312.08559

Labeled data can be expensive to collect.

Issue #2: Class label scarcity can amplify unfairness.

What happens in the low-label regime?

e.g. fair active learning strategies

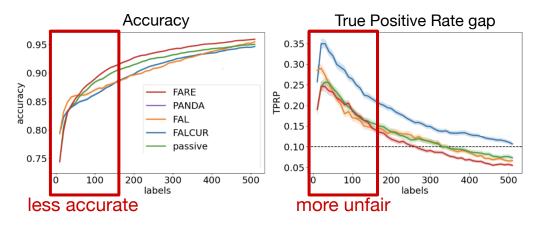


Labeled data can be expensive to collect.

Issue #2: Class label scarcity can amplify unfairness.

What happens in the low-label regime?

e.g. fair active learning strategies



worse accuracy AND fairness in low-label regime

intersectional fairness amplifies data scarcity e.g. *avoid discriminating against Hispanic females aged 30-40*

Dataset: Communities & Crime
Y = crime rate; A = ethnicity

Figure source: https://arxiv.org/pdf/2312.08559

Fairness – Outline

Fairness with **partial** group labels

Fairness with **no** group labels

Fairness in the low-label regime

Fairness with <u>partial</u> group labels

Problem setting: Fairness with partial group labels

 $\mathcal{D}_{\text{pred}} = \{(X_i, Y_i)\}_{i=1}^n \longrightarrow$ large dataset

covariates X; class labels Y

$$\mathcal{D}_{\text{pred}} = \{(X_i, Y_i)\}_{i=1}^n \longrightarrow$$
large dataset

covariates X; class labels Y

$$\mathcal{D}_{\text{sensitive}} = \{(X_i, Y_i, A_i)\}_{i=1}^n \xrightarrow{\text{small}} \text{dataset}$$
(X, Y) + sensitive attribute A i.e. group label

18

$$\mathcal{D}_{\mathrm{pred}} = \{(X_i, Y_i)\}_{i=1}^n \longrightarrow$$
large dataset

covariates X; class labels Y

$$\mathcal{D}_{\text{sensitive}} = \{(X_i, Y_i, A_i)\}_{i=1}^n \xrightarrow{\text{small}} \text{dataset}$$

(X, Y) + sensitive attribute A i.e. group label

Case study: In-processing mitigations with partial group labels

Reminder: OPT_{IP} : arg min $\mathcal{L}_{pred}(f; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(f; \mathcal{D}_{sensitive})$

$$\mathcal{D}_{\text{pred}} = \{(X_i, Y_i)\}_{i=1}^n \longrightarrow$$
large dataset

covariates X; class labels Y

$$\mathcal{D}_{\text{sensitive}} = \{(X_i, Y_i, A_i)\}_{i=1}^n$$
 $rac{small}{dataset}$

(X, Y) + sensitive attribute A i.e. group label

Case study: In-processing mitigations with partial group labels Reminder: OPT_{IP} : $\arg\min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(f; \mathcal{D}_{sensitive})$

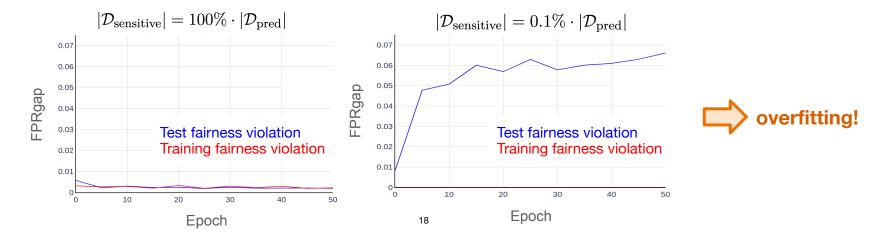
$$\mathcal{D}_{\text{pred}} = \{(X_i, Y_i)\}_{i=1}^n \mapsto \text{large}$$

covariates X; class labels Y

$$\mathcal{D}_{\text{sensitive}} = \{(X_i, Y_i, A_i)\}_{i=1}^n$$
 $rac{small}{dataset}$

(X, Y) + sensitive attribute A i.e. group label

Case study: In-processing mitigations with partial group labels Reminder: OPT_{IP} : $\arg \min_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(f; \mathcal{D}_{sensitive})$



How to deal with partial group labels?

High level strategies

1. Use proxy for missing sensitive attributes

1. Make fairness mitigations more sample efficient

How to deal with partial group labels?

High level strategies

1. Use proxy for missing sensitive attributes

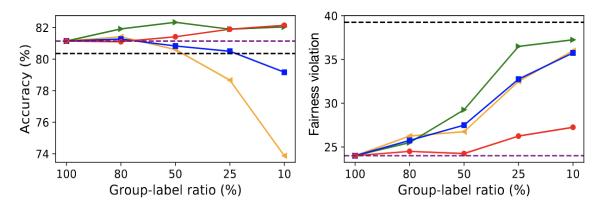
1. Make fairness mitigations more sample efficient

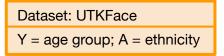
Strategies for missing sensitive attributes A

e.g. process data + in-processing fairness mitigation

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}





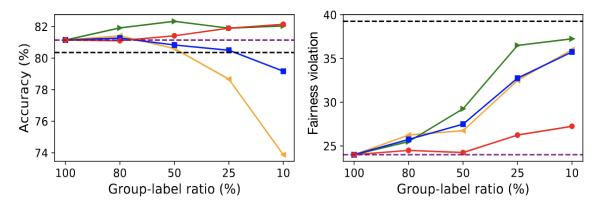
Strategies for missing sensitive attributes A

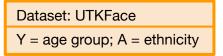
e.g. process data + in-processing fairness mitigation

• drop samples with missing A

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}





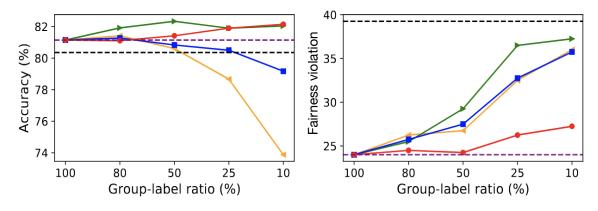
Strategies for missing sensitive attributes A

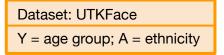
e.g. process data + in-processing fairness mitigation

- drop samples with missing A
- impute A uniformly at random

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}





Strategies for missing sensitive attributes A

e.g. process data + in-processing fairness mitigation

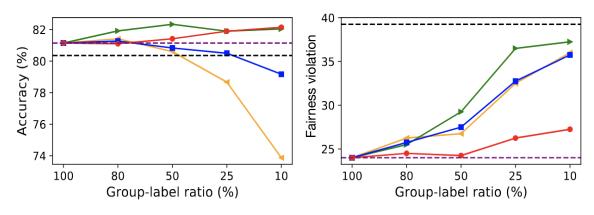
- drop samples with missing A
- impute A uniformly at random

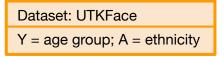
Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}

¹ Department of ECE/ASRI, Seoul National University ² NAVER AI Lab ³ Interdisciplinary Program in Artificial Intelligence, Seoul National University

• pseudo-labels from classifier $\hat{f}_{A}\left(x
ight)$ trained on $D_{sensitive}=\{(x_{i},\,a_{i})\}_{i=1}^{n}$





Strategies for missing sensitive attributes A

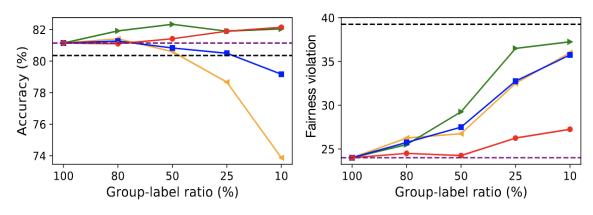
e.g. process data + in-processing fairness mitigation

- drop samples with missing A
- impute A uniformly at random

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}

- pseudo-labels from classifier $\hat{f}_{A}\left(x
 ight)$ trained on $D_{sensitive}=\{(x_{i},\,a_{i})\}_{i=1}^{n}$
- pseudo-labels only on high-confidence samples otherwise random value for A



Dataset: UTKFace			
Y = age group; A = ethnicity			

Strategies for missing sensitive attributes A

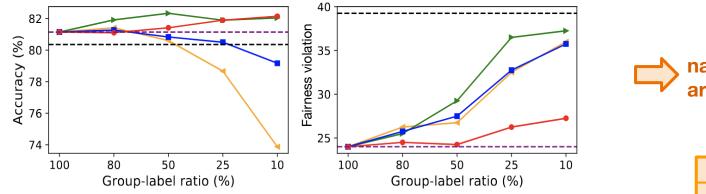
e.g. process data + in-processing fairness mitigation

- drop samples with missing A
- impute A uniformly at random

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}

- pseudo-labels from classifier $\hat{f}_{A}\left(x
 ight)$ trained on $D_{sensitive}=\{(x_{i},\,a_{i})\}_{i=1}^{n}$
- pseudo-labels only on high-confidence samples otherwise random value for A



High-confidence group pseudo-labels

Predict missing sensitive attributes A:

$$\hat{a} = egin{cases} rg\max \hat{f}_{A}\left(x
ight) & \hat{f}_{A}\left(x
ight) > au \ \mathrm{draw \ from \ }P\left(A|Y=y
ight) & \mathrm{otherwise} \end{cases}$$

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}

High-confidence group pseudo-labels

Predict missing sensitive attributes A:

$$\hat{a} = egin{cases} rg\max \hat{f}_A\left(x
ight) & \hat{f}_A\left(x
ight) > \overline{ au} \ \mathrm{draw \ from \ } P\left(A|Y=y
ight) & \mathrm{otherwise} \end{cases}$$

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}

¹ Department of ECE/ASRI, Seoul National University ² NAVER AI Lab ³ Interdisciplinary Program in Artificial Intelligence, Seoul National University

2

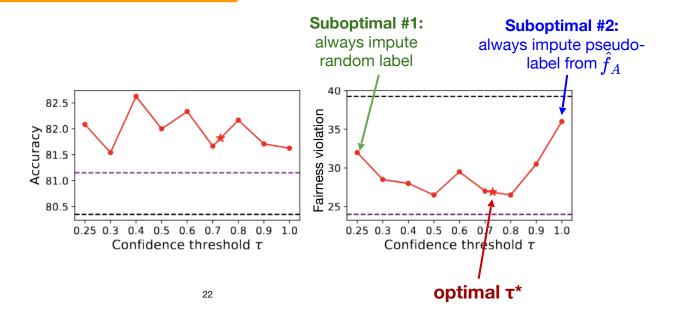
High-confidence group pseudo-labels

Predict missing sensitive attributes A: **7**

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung^{1*} Sanghyuk Chun^{2†} Taesup Moon^{1,3†}

¹ Department of ECE/ASRI, Seoul National University ² NAVER AI Lab ³ Interdisciplinary Program in Artificial Intelligence, Seoul National University

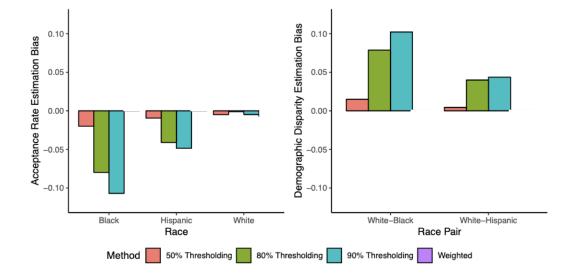


Use validation set (with group labels)

Is thresholding confidence an optimal strategy?

Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved

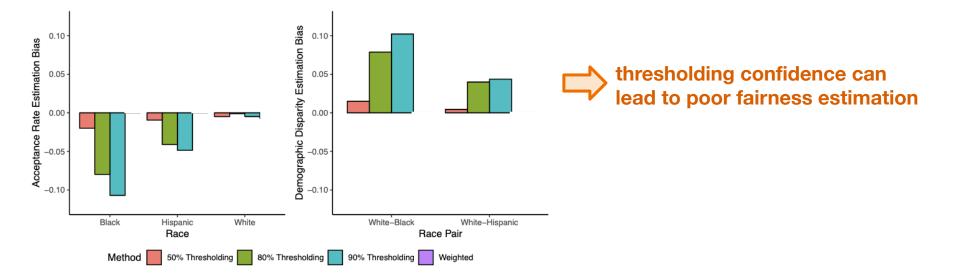
Jiahao Chen cjiahao@gmail.com	Nathan Kallus Cornell Tech New York, New York, USA kallus@cornell.edu	Xiaojie Mao* Cornell Tech New York, New York, USA xm77@cornell.edu		
	gmail.com Cornell Ithaca, Ner	ine Udell University w York, USA ornell.edu		



Is thresholding confidence an optimal strategy?

Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved

Jiahao Chen	Nathan Kallus		Xiaojie Mao*
cjiahao@gmail.com	Cornell Tech New York, New York, USA		Cornell Tech
			New York, New York, USA
	kallus@cornell.edu >		xm77@cornell.edu
Geoffry	- Svacha	Madeleir	ne Udell
svacha@	svacha@gmail.com Cornell U		niversity
		Ithaca, New	York, USA
		udell@co:	rnell.edu

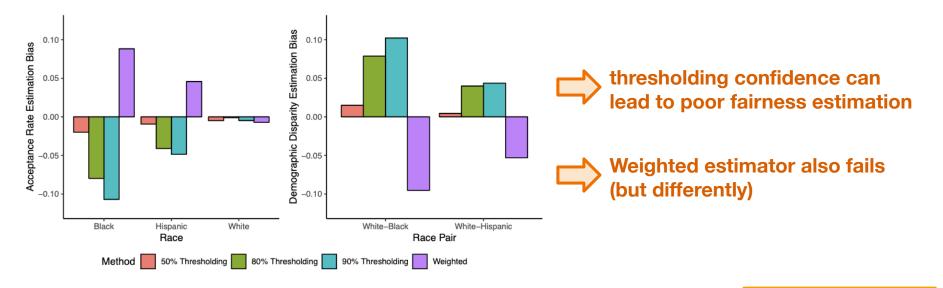


Dataset: HMDA Y = 'was loan approved?' A = ethnicity

Is thresholding confidence an optimal strategy?

Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved

Jiahao Chen	Nathan Kallus		Xiaojie Mao*	
cjiahao@gmail.com	Cornell Tech New York, New York, USA		Cornell Tech	
			New York, New York, USA	
	kallus@cornell.edu		xm77@cornell.edu	
Geoffr	y Svacha Madelei		e Udell	
svacha@	@gmail.com Cornell University			
	Ithaca, New York, USA			
	nell.edu			



Dataset: HMDA Y = 'was loan approved?' A = ethnicity

Summary: Using a proxy group label

Effective at mitigating unfairness

as long as sufficient group-labeled validation data is available

e.g. necessary to select hyperparameters like confidence threshold

Summary: Using a proxy group label

Effective at mitigating unfairness

as long as sufficient group-labeled validation data is available

e.g. necessary to select hyperparameters like confidence threshold

Statistically, often easy to predict the sensitive attribute from little data but it can have ethical concerns and can amplify/hide biases in the data

	Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data					
Fairness Under Unawareness:	Michael Veale 🝺 ¹ and Reuben Binns ²		nproving Fairness in Machine Learning Systems: What Do Industry Practitioners Need?			
cjiahao@gmail.com Cornell Tech New York, New York, USA New	J nobserved Xiaojie Mao* Cornell Tech York, New York, USA 1177@cornell.edu	Kenneth Hol Carnegie Mellon t Pittsburgh, kjholste@cs.cn	stein Jennifer Jniversity Mic PA N	Wortman Vaughan rrosoft Research Vew York, NY @microsoft.com	Hal Daumé III Microsoft Research & University of Maryland New York, NY me@hal3.name	
Geoffry Svacha Madeleine Udell svacha@gmail.com Cornell University Ithaca, New York, USA udell@cornell.edu			Miroslav Dudík Microsoft Research New York, NY mdudik@microsoft.com	Hanna W Microsoft R New Yor wallach@micr	k, NY	

How to deal with partial group labels?

High level strategies

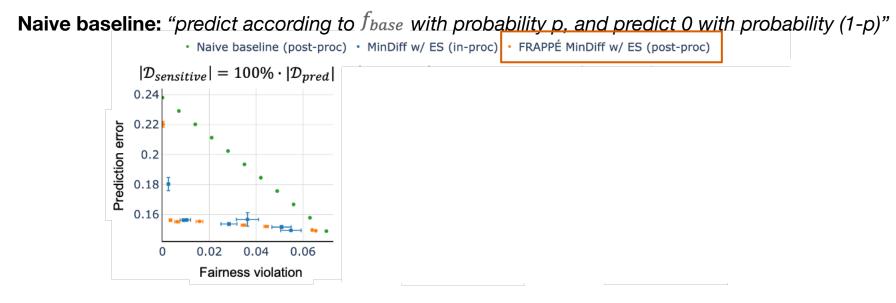
1. Use proxy for missing sensitive attributes

1. Make fairness mitigations more sample efficient

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

 ${\bf Alexandru} \ {\bf Tifrea^{*\,1}} \ \ {\bf Preethi} \ {\bf Lahoti}^{\,2} \ \ {\bf Ben} \ {\bf Packer}^{\,2} \ \ {\bf Yoni} \ {\bf Halpern}^{\,2} \ \ {\bf Ahmad} \ {\bf Beirami}^{\,2} \ \ {\bf Flavien} \ {\bf Prost}^{\,2}$

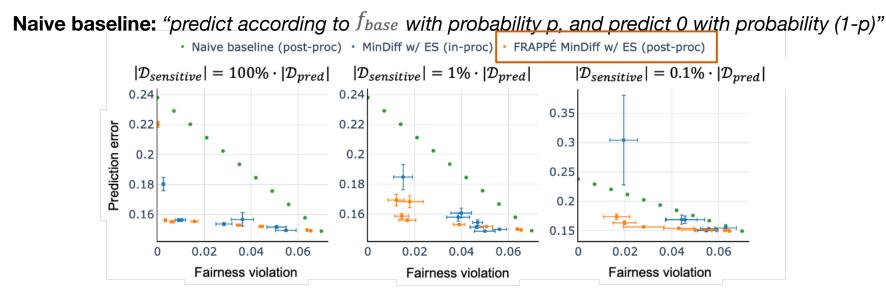
Setup: Equal Opportunity on Adult dataset



FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea* 1 Preethi Lahoti 2 Ben Packer 2 Yoni Halpern 2 Ahmad Beirami 2 Flavien Prost 2

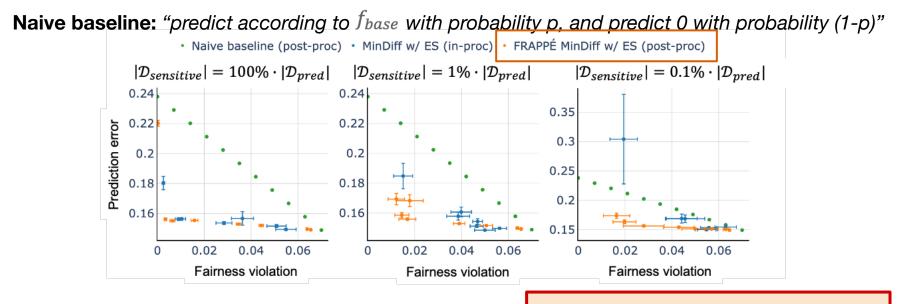
Setup: Equal Opportunity on Adult dataset



FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea* 1 Preethi Lahoti 2 Ben Packer 2 Yoni Halpern 2 Ahmad Beirami 2 Flavien Prost 2

Setup: Equal Opportunity on Adult dataset



computation time ~8x faster than in-processing

Accurate but unfair model:

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea*¹ Preethi Lahoti² Ben Packer² Yoni Halpern² Ahmad Beirami² Flavien Prost²

$$f_{base} \coloneqq \operatorname{argmin}_{\boldsymbol{f}} \mathcal{L}_{pred}(\boldsymbol{f}; \mathcal{D}_{pred})$$

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea*¹ Preethi Lahoti² Ben Packer² Yoni Halpern² Ahmad Beirami² Flavien Prost²

Proposed post-hoc transformation:

$$f_{base} \coloneqq \operatorname{argmin}_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred})$$

$$f_{fair}(x) = f_{base}(x) + T(x)$$

(logit additive for classification)

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea*¹ Preethi Lahoti² Ben Packer² Yoni Halpern² Ahmad Beirami² Flavien Prost²

$$f_{base} \coloneqq \operatorname{argmin}_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred})$$

Proposed post-hoc transformation:

Accurate but unfair model:

 $f_{fair}(x) = f_{base}(x) + T(x)$ (logit additive for classification)

not group-dependent

Accurate but unfair model:

Proposed post-hoc transformation:

In-processing:

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea^{* 1} Preethi Lahoti² Ben Packer² Yoni Halpern² Ahmad Beirami² Flavien Prost²

$$f_{base} \coloneqq \operatorname{argmin}_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred})$$

 $f_{fair}(x) = f_{base}(x) + T(x)$ (logit additive for classification)

 $OPT_{IP}(\boldsymbol{f}; \lambda) = \mathcal{L}_{pred}(\boldsymbol{f}; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(\boldsymbol{f}; \mathcal{D}_{sensitive})$

Accurate but unfair model:

In-processing:

Proposed post-hoc transformation:

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea^{* 1} Preethi Lahoti² Ben Packer² Yoni Halpern² Ahmad Beirami² Flavien Prost²

$$f_{base} \coloneqq \operatorname{argmin}_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred})$$

 $f_{fair}(x) = f_{base}(x) + T(x)$ (logit additive for classification)

not group-dependent

 $OPT_{IP}(\boldsymbol{f}; \lambda) = \mathcal{L}_{pred}(\boldsymbol{f}; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(\boldsymbol{f}; \mathcal{D}_{sensitive})$

Proposed post-processing for learning T:

 $OPT_{PP}(\mathbf{T}; \lambda) = Discrepancy((f_{base} + \mathbf{T}) \parallel f_{base}; \mathcal{D}_{unlab}) + \lambda \mathcal{L}_{fair}(f_{base} + \mathbf{T}; \mathcal{D}_{sensitive})$

Accurate but unfair model:

In-processing:

Proposed post-hoc transformation:

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea^{* 1} Preethi Lahoti² Ben Packer² Yoni Halpern² Ahmad Beirami² Flavien Prost²

$$f_{base} \coloneqq \operatorname{argmin}_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred})$$

 $f_{fair}(x) = f_{base}(x) + T(x)$ (logit additive for classification)

not group-dependent

$$OPT_{IP}(\boldsymbol{f}; \lambda) = \mathcal{L}_{pred}(\boldsymbol{f}; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(\boldsymbol{f}; \mathcal{D}_{sensitive})$$

Proposed post-processing for learning **T**:

$$OPT_{PP}(\mathbf{T}; \lambda) = Discrepancy((f_{base} + \mathbf{T}) \parallel f_{base}; \mathcal{D}_{unlab}) + \lambda \mathcal{L}_{fair}(f_{base} + \mathbf{T}; \mathcal{D}_{sensitive})$$

any notion of fairness

Accurate but unfair model:

In-processing:

Proposed post-hoc transformation:

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

 ${\bf Alexandru} ~ {\bf Ji} {\bf frea}^{*\,1} ~ {\bf Preethi} ~ {\bf Lahoti}^{\,2} ~ {\bf Ben} ~ {\bf Packer}^{\,2} ~ {\bf Yoni} ~ {\bf Halpern}^{\,2} ~ {\bf Ahmad} ~ {\bf Beirami}^{\,2} ~ {\bf Flavien} ~ {\bf Prost}^{\,2}$

$$f_{base} \coloneqq \operatorname{argmin}_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred})$$

 $f_{fair}(x) = f_{base}(x) + T(x)$ (logit additive for classification)

not group-dependent

$$OPT_{IP}(\boldsymbol{f}; \lambda) = \mathcal{L}_{pred}(\boldsymbol{f}; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(\boldsymbol{f}; \mathcal{D}_{sens})$$

Proposed post-processing for learning **T**:

$$OPT_{PP}(\mathbf{T}; \lambda) = \underbrace{Discrepancy((f_{base} + \mathbf{T}) \parallel f_{base}; \mathcal{D}_{unlab})}_{\text{output discrepancy}} + \underbrace{\lambda \mathcal{L}_{fair}(f_{base} + \mathbf{T}; \mathcal{D}_{sensitive})}_{\text{any notion of fairness}}$$

Accurate but unfair model:

In-processing:

Proposed post-hoc transformation:

FRAPPÉ: A Group Fairness Framework for Post-Processing Everything

Alexandru Ţifrea*¹ Preethi Lahoti² Ben Packer² Yoni Halpern² Ahmad Beirami² Flavien Prost²

$$f_{base} \coloneqq \operatorname{argmin}_{f} \mathcal{L}_{pred}(f; \mathcal{D}_{pred})$$

 $f_{fair}(x) = f_{base}(x) + T(x)$ (logit additive for classification)

not group-dependent

$$OPT_{IP}(\boldsymbol{f}; \lambda) = \mathcal{L}_{pred}(\boldsymbol{f}; \mathcal{D}_{pred}) + \lambda \mathcal{L}_{fair}(\boldsymbol{f}; \mathcal{D}_{sensitive})$$

Proposed post-processing for learning **T**:

$$OPT_{PP}(\mathbf{T}; \lambda) = \underbrace{Discrepancy((f_{base} + \mathbf{T}) \parallel f_{base}; \mathcal{D}_{unlab})}_{\text{output discrepancy}} + \underbrace{\lambda \mathcal{L}_{fair}(f_{base} + \mathbf{T}; \mathcal{D}_{sensitive})}_{\text{any notion of fairness}}$$

$$any notion of fairness$$

$$D_{unlab} = \{x_i\}_{i=1}^{N}$$

$$unlabeled data$$

Instances of modular multi-objective learning

LLM alignment

Asymptotics of Language Model Alignment

Joy Qiping Yang University of Sydney Sydney, Australia qyan6238@uni.sydney.edu.au Salman Salamatian Massachusetts Institute of Technology Cambridge, MA, USA salmansa@mit.edu

Ziteng Sun, Ananda Theertha Suresh, Ahmad Beirami Google Research New York, NY, USA {zitengsun, theertha, beirami}@google.com

Out-of-domain generalization

OVERPARAMETERISATION AND WORST-CASE GENER-ALISATION: FRIEND OR FOE?

Aditya Krishna Menon, Ankit Singh Rawat & Sanjiv Kumar Google Research New York, NY {adityakmenon,ankitsrawat,sanjivk}@google.com

Adversarial robustness

Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

Aditi Raghunathan^{*1} Sang Michael Xie^{*1} Fanny Yang² John C. Duchi¹ Percy Liang¹

Unlabeled Data Improves Adversarial Robustness

Yair Carmon* Stanford University yairc@stanford.edu Aditi Raghunathan* Stanford University aditir@stanford.edu

Percy Liang Stanford University pliang@cs.stanford.edu

John C. Duchi Stanford University jduchi@stanford.edu

Ludwig Schmidt

UC Berkelev

ludwig@berkeley.edu

Summary: Modular fairness mitigations

More sample efficient than in-processing

iff learning the fairness correction module is statistically efficient

e.g. T(x) is not a complex function, T(x) has low-dimensional structure (e.g. sparsity)

Summary: Modular fairness mitigations

More sample efficient than in-processing

iff learning the fairness correction module is statistically efficient

e.g. T(x) is not a complex function, T(x) has low-dimensional structure (e.g. sparsity)

Effective technique to induce any notion of fairness

iff fairness violations can be measured from observational data

e.g. T(X) implicitly estimates P(A|X) which might unidentifiable from observational data

Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination

> Nathan Kallus Cornell University, kallus@cornell.edu

Xiaojie Mao Cornell University, xm77@cornell.edu

Angela Zhou Cornell University, az434@cornell.edu

Fairness with no group labels

Fairness as worst-group performance

USTICE AS FAIRNESS

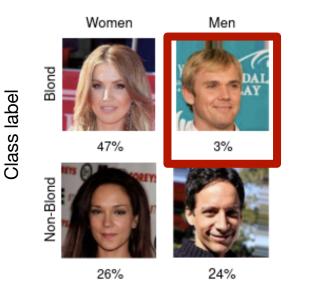
JOHN RAWLS

Definition A hypothesis h^* satisfies Rawlsian max-min fairness if it maximizes the accuracy of the worst-off group

$$h^{\star} = rg \max_{h} \min_{a \in \mathcal{A}} Acc \left(h | A = a
ight)$$

Mitigation strategies for worst-group fairness

Group labels



If we know group labels:

- importance weighting (IW)
- group distributionally robust optimization (GDRO)

DISTRIBUTIONALLY ROBUST NEURAL NETWORKS FOR GROUP SHIFTS: ON THE IMPORTANCE OF REGULARIZATION FOR WORST-CASE GENERALIZATION

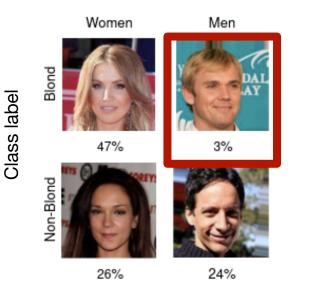
Shiori Sagawa* Stanford University ssagawa@cs.stanford.edu Pang Wei Koh* Stanford University pangwei@cs.stanford.edu

Tatsunori B. Hashimoto Microsoft tahashim@microsoft.com Percy Liang Stanford University pliang@cs.stanford.edu

CelebA dataset

Mitigation strategies for worst-group fairness

Group labels



CelebA dataset

If we know group labels:

- importance weighting (IW)
- group distributionally robust optimization (GDRO)

DISTRIBUTIONALLY ROBUST NEURAL NETWORKS FOR GROUP SHIFTS: ON THE IMPORTANCE OF REGULARIZATION FOR WORST-CASE GENERALIZATION

Shiori Sagawa* Stanford University ssagawa@cs.stanford.edu Pang Wei Koh* Stanford University pangwei@cs.stanford.edu

Tatsunori B. Hashimoto Microsoft tahashim@microsoft.com Percy Liang Stanford University pliang@cs.stanford.edu

In the absence of group labels:

Two-stage method

- 1) identify worse-off group
- 2) employ e.g. IW/GDRO to improve worst-group error

$$\mathcal{R}_{erm}\left(heta
ight):=\mathbb{E}_{P}\left[\ell\left(heta;Z
ight)
ight]$$

Fairness Without Demographics in Repeated Loss Minimization

Tatsunori B. Hashimoto¹² Megha Srivastava¹ Hongseok Namkoong³ Percy Liang¹

$$\mathcal{R}_{erm}\left(heta
ight):=\mathbb{E}_{P}\left[\ell\left(heta;Z
ight)
ight]$$

Fairness Without Demographics in Repeated Loss Minimization

Tatsunori B. Hashimoto¹² Megha Srivastava¹ Hongseok Namkoong³ Percy Liang¹

 $\mathcal{R}_{\mathrm{dro}}(heta;r):=\sup_{Q\in\mathcal{B}(P,r)}\mathbb{E}_Q[\ell(heta;Z)]$ worst-case loss wrt the uncertainty set Q

$$\mathcal{R}_{erm}\left(heta
ight):=\mathbb{E}_{P}\left[\ell\left(heta;Z
ight)
ight]$$

Fairness Without Demographics in Repeated Loss Minimization

Tatsunori B. Hashimoto¹² Megha Srivastava¹ Hongseok Namkoong³ Percy Liang¹

 $\mathcal{R}_{ ext{dro}}(heta;r):=\sup_{Q\in\mathcal{B}(P,r)}\mathbb{E}_{Q}[\ell(heta;Z)]$ worst-case loss wrt the uncertainty set Q

P = (marginal)data distribution

$$\mathcal{R}_{erm}\left(heta
ight):=\mathbb{E}_{P}\left[\ell\left(heta;Z
ight)
ight]$$

Fairness Without Demographics in Repeated Loss Minimization

Tatsunori B. Hashimoto¹² Megha Srivastava¹ Hongseok Namkoong³ Percy Liang¹

$$\mathcal{R}_{\mathrm{dro}}(\theta; r) := \sup_{\substack{Q \in \mathcal{B}(P, r) \\ \varphi \in \mathcal{B}(P, r) \\ \mathrm{data\ distribution}}} \mathbb{E}_{Q}[\ell(\theta; Z)] \text{ worst-case loss wrt the uncertainty set } Q$$

$$\mathcal{R}_{erm}(\theta) := \mathbb{E}_{P}\left[\ell\left(\theta; Z\right)\right]$$

$$\mathcal{R}_{dro}(\theta; r) := \sup_{\substack{Q \in \mathcal{B}(P, r) \\ \text{data distribution}}} \mathbb{E}_{Q}[\ell(\theta; Z)] \text{ worst-case loss wrt the uncertainty set } \mathsf{Q}$$

Fairness Without Demographics in Repeated Loss Minimization

$$\mathcal{R}_{erm}(\theta) := \mathbb{E}_{P}\left[\ell\left(\theta; Z\right)\right]$$

$$\mathcal{R}_{dro}(\theta; r) := \sup_{\substack{Q \in \mathcal{B}(P, r) \\ \text{data distribution}}} \mathbb{E}_{Q}[\ell(\theta; Z)] \text{ worst-case loss wrt the uncertainty set } Q$$

What if no group labels available?

Fairness Without Demographics in Repeated Loss Minimization

A: pick a lower bound for α_{min}

Detect worst-group using a biased classifier

DRO: upweights high-loss samples.

Alternative: Two-stage method

- 1) use **biased** classifier to identify error set
- 2) train fair classifier via IW / GroupDRO

Detect worst-group using a biased classifier

DRO: upweights high-loss samples.

Alternative: Two-stage method

- 1) use **biased** classifier to identify error set
- 2) train fair classifier via IW / GroupDRO

Why are two-stage methods expected to work?

Majority group

Intuition: a biased classifier will predict based on the stronger correlation. e.g. background

Detect worst-group using a biased classifier

DRO: upweights high-loss samples.

Alternative: Two-stage method

- 1) use **biased** classifier to identify error set
- 2) train fair classifier via IW / GroupDRO

Why are two-stage methods expected to work?

Majority group

Minority group

Intuition: a biased classifier will predict based on the stronger correlation. e.g. background

incorrect predictions where spurious correlation does not hold i.e. minority groups

Setting 1: group labels available for validation set

Setting 1: group labels available for validation set

Examples:

- heavy regularization e.g. via early stopping
- custom loss function e.g. amplify "easy" examples

Just Train Twice: Improving Group Robustness without Training Group Information

Evan Zheran Liu^{*1} Behzad Haghgoo^{*1} Annie S. Chen^{*1} Aditi Raghunathan¹ Pang Wei Koh¹ Shiori Sagawa¹ Percy Liang¹ Chelsea Finn¹

Learning from Failure: Training Debiased Classifier from Biased Classifier

Junhyun Nam¹ Hyuntak Cha² Sungsoo Ahn¹ Jacho Lee¹ Jinwoo Shin^{1,2} ¹School of Electrical Engineering, KAIST ²Graduate School of AI, KAIST {junhyun.nam, hyuntak.cha, sungsoo.ahn, jaeho-lee, jinwoos}@kaist.ac.kr

Use worst-group validation error to select regularization strength, IW weights etc.

Setting 2: no group labels at all

Setting 2: no group labels at all

Examples:

- identify groups from training AND validation data with ensemble of biased classifiers to reduce noise
- post-hoc logit adjustment using $P\left(Y|\hat{Y}_{biased}
 ight)$ as an estimate of $P\left(Y|A
 ight)$

	Boosting worst-group accuracy without any group annotations
	Vincent Bardenhagen, Alexandru Tifrea, Fanny Yang Department of Computer Science ETH Zurich, Switzerland {vbardenha, tifreaa, fan.yang}@ethz.ch
	Group Robust Classification
	Without Any Group Information
Univ	Christos Tsirigotis* Joao Monteiro Pau Rodriguez ersité de Montréal, Mila, ServiceNow Research ServiceNow Research Apple MLR

Setting 2: no group labels at all

Examples:

- identify groups from training AND validation data with ensemble of biased classifiers to reduce noise
- post-hoc logit adjustment using $P\left(Y|\hat{Y}_{biased}
 ight)$ as an estimate of $P\left(Y|A
 ight)$

		Corrupt	-MNIST	Wate	rbirds	Cel	ebA	Color I	MNIST	Ad	lult	Pov	erty
	Tuning	Avg	Wg	Avg	Wg	Avg	Wg	Avg	Wg	Avg	Wg	Avg	Wg
No group	ERM	99.6	71.2	97.9	74.9	94.3	60.7	99.8	82.6	80.1	41.6	87.6	55.6
labels	Ours	99.0	96.5	97.5	78.5	88.0	78.9	99.3	96.6	81.2	68.0	86.3	50.0
Val group	ERM WG	99.5	79.8	97.6	86.7	93.1	77 8	99 7	84.4	78.9	61.2	87.7	51.5
labels	JTT	99.1	91.3	93.3	86.7	88.0	81.1	98.3	94.8	77.8	63.3	64.5	60.5

•	g worst-group accuracy any group annotations
De	enhagen; Alexandru Tifrea; Fanny Yang epartment of Computer Science ETH Zurich, Switzerland nha,tifreaa,fan.yang}@ethz.ch
	p Robust Classification t Any Group Information
Without Christos Tsiriş	t Any Group Information

Similar average and worst-group accuracy for <u>two-stage methods</u>:

- with no group labels
- with validation group labels

Recall: Two-stage methods

- 1) use biased classifier to identify error set
- 2) train fair classifier via IW / GDRO

Recall: Two-stage methods

- 1) use biased classifier to identify error set
- 2) train fair classifier via IW / GDRO

The opposite of what robust statistics literature recommends! e.g. can amplify outliers, noisy samples etc

Can we get both fairness and robustness to outliers?

Recall: Two-stage methods

- 1) use biased classifier to identify error set
- 2) train fair classifier via IW / GDRO

The opposite of what robust statistics literature recommends! e.g. can amplify outliers, noisy samples etc

Can we get both fairness and robustness to outliers?

Robust Mixture Learning when Outliers Overwhelm Small Groups

Daniil Dmitriev^{1*}, Rares-Darius Buhai^{1*}, Stefan Tiegel¹, Alexander Wolters², Gleb Novikov³, Amartya Sanyal⁴, David Steurer¹, and Fanny Yang¹

Clustering algorithm that is

- applicable even for |Outliers| >> |Minority group|
- computationally efficient
- information-theoretically optimal

Recall: Two-stage methods

- 1) use biased classifier to identify error set
- 2) train fair classifier via IW / GDRO

The opposite of what robust statistics literature recommends! e.g. can amplify outliers, noisy samples etc

Can we get both fairness and robustness to outliers?

Robust Mixture Learning when Outliers Overwhelm Small Groups

Daniil Dmitriev^{1*}, Rares-Darius Buhai^{1*}, Stefan Tiegel¹, Alexander Wolters², Gleb Novikov³, Amartya Sanyal⁴, David Steurer¹, and Fanny Yang¹

Fairness without Demographics through Adversarially Reweighted Learning

Preethi Lahoti * plahoti@mpi-inf.mpg.de Max Planck Institute for Informatics Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, Ed H. Chi Google Research Clustering algorithm that is

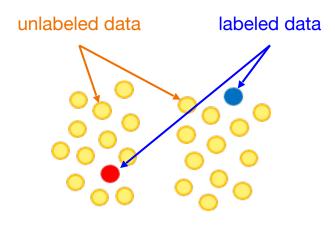
- applicable even for |Outliers| >> |Minority group|
- computationally efficient
- information-theoretically optimal

Idea: only upweight samples in the error set that are computationally identifiable using simple function class \mathcal{F} .

Fairness in the low-label regime

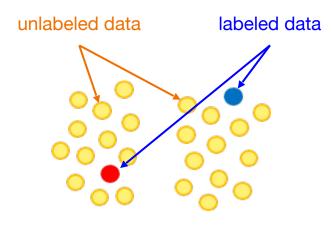
unlabeled data labeled data

Research questions



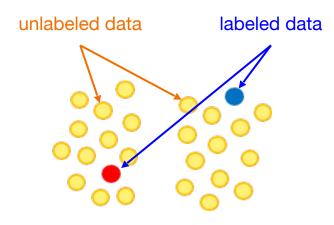
- 1) How to acquire the labeled data?
- 2) How to learn from both labeled and unlabeled data?

Research questions



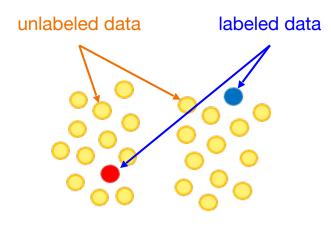
- 1) How to acquire the labeled data? active learning
- 2) How to learn from both labeled and unlabeled data?

Research questions



- 1) How to acquire the labeled data? active learning
- 2) How to learn from both labeled and unlabeled data?
- semi-supervised learning

Research questions



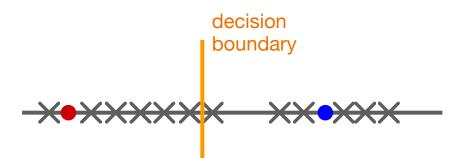
- How to acquire the labeled data? active learning 1)
- How to learn from both labeled 2) and unlabeled data?
- semi-supervised learning

Fairness problems

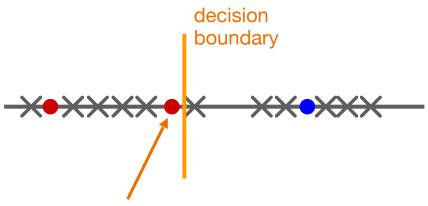
- class imbalance
- group imbalance (but potentially balanced classes)

Uncertainty sampling

"binary search to find decision boundary"



Uncertainty sampling *"binary search to find decision boundary"*



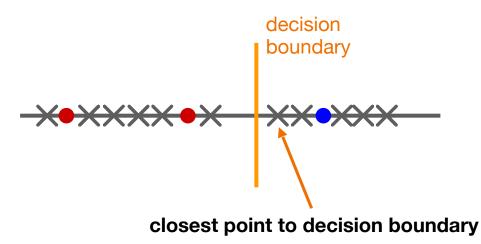
closest point to decision boundary

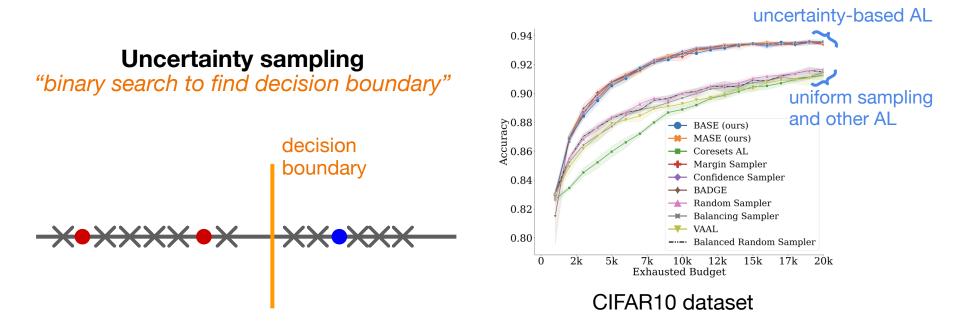
Uncertainty sampling *"binary search to find decision boundary"*

> decision boundary

★●XXXX●X XX●XX

Uncertainty sampling *"binary search to find decision boundary"*





Standard active learning can improve fairness

Class-imbalanced classification

best *avg-case* classifier true decision boundary Learning on the Border: Active Learning in Imbalanced Data Classification

Şeyda Ertekin¹, Jian Huang², Léon Bottou³, C. Lee Giles^{2,1}

Focus on linear classification

Standard active learning can improve fairness

Class-imbalanced classification



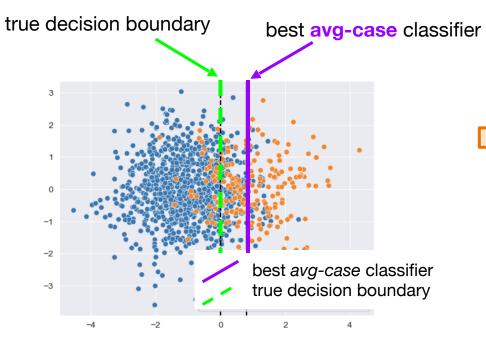
Learning on the Border: Active Learning in Imbalanced Data Classification

Şeyda Ertekin¹, Jian Huang², Léon Bottou³, C. Lee Giles^{2,1}

Focus on linear classification

Standard active learning can improve fairness

Class-imbalanced classification



Learning on the Border: Active Learning in Imbalanced Data Classification

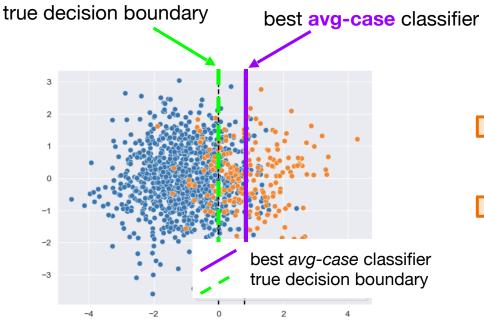
Şeyda Ertekin¹, Jian Huang², Léon Bottou³, C. Lee Giles^{2,1}

Decision boundary of biased classifier is closer to minority class

Focus on linear classification

Standard active learning can improve fairness

Class-imbalanced classification



Learning on the Border: Active Learning in Imbalanced Data Classification

Şeyda Ertekin¹, Jian Huang², Léon Bottou³, C. Lee Giles^{2,1}

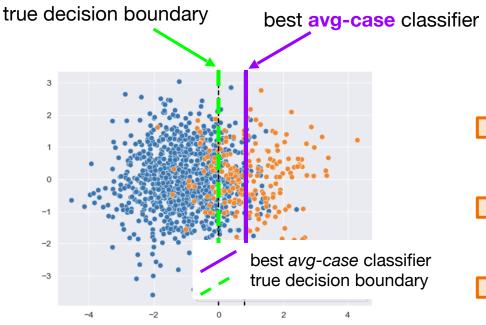
Decision boundary of biased classifier is closer to minority class

U-AL tends to select more minority points to be labeled

Focus on linear classification

Standard active learning can improve fairness

Class-imbalanced classification



Learning on the Border: Active Learning in Imbalanced Data Classification

Şeyda Ertekin¹, Jian Huang², Léon Bottou³, C. Lee Giles^{2,1}

Decision boundary of biased classifier is closer to minority class

U-AL tends to select more minority points to be labeled

Focus on linear classification

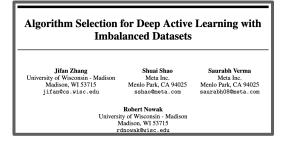
Standard active learning can improve fairness Class-imbalanced classification

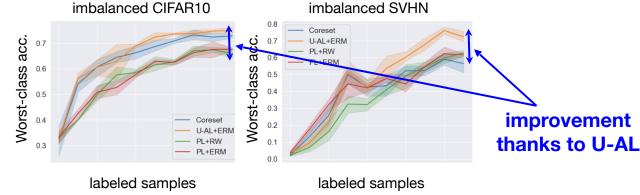
U-AL also mitigates class imbalance in non-linear classification!

l	Active Learning at the ImageNet Scale					
l	Zeyad Ali Sami Emam* ^{#‡} zeyad@umd.edu	0	fin Chu*† umd.edu	Ping-Yeh (pchiang@u	0	Wojciech Czaja [†] wojtek@umd.edu
l	Richard Leapm leapmanr@mail.ni			Goldblum[§] m@nyu.edu		Goldstein [†] umd.edu

Improving class and group imbalanced classification with uncertainty-based active learning

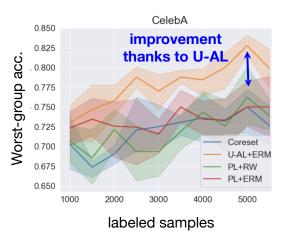
Alexandru Tifrea* Department of Computer Science, ETH Zurich	TIFREAA@INF.ETHZ.CH
John Hill* Department of Computer Science, Georgia Institute of Technology	JHILL326@GATECH.EDU
Fanny Yang Department of Computer Science, ETH Zurich	FAN.YANG@INF.ETHZ.CH





Standard active learning can improve fairness

Group-imbalanced classification



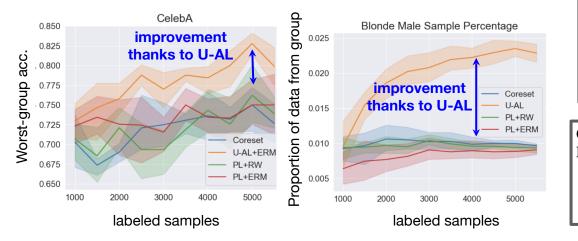
Improving class	and group	imbalanced	classification
with unce	ertainty-bas	ed active le	arning
levandru Tifrea*			TIPPEAA@INE PTHZ

Department of Computer Science, ETH Zurich	TIFREAA@INF.ETHZ.CH
John Hill* Department of Computer Science, Georgia Institute of Technology	JHILL326@GATECH.EDU
Fanny Yang Department of Computer Science, ETH Zurich	FAN.YANG@INF.ETHZ.CH

CAN ACTIVE LEARNING PREEMPTIVELY MITIGATE FAIRNESS ISSUES?

Frédéric Branchaud-Charron, Parmida Atighehchian, Pau Rodríguez, Grace Abuhamad, Alexandre Lacoste ServiceNow {fr.branchaud-charron,parmida.atighehchian}@servicenow.com

Standard active learning can improve fairness Group-imbalanced classification



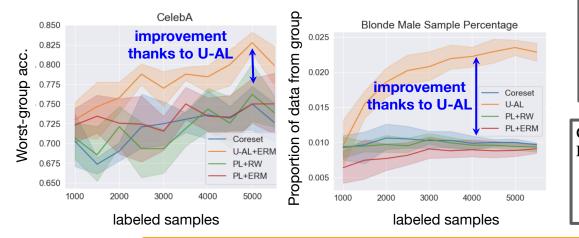
Improving class and group	imbalanced classification
with uncertainty-ba	sed active learning
Alexandru Tifrea*	TIFREAA@INF ETHZ CH

Department of Computer Science, ETH Zurich	TIFREAA@INF.ETHZ.CH
John Hill* Department of Computer Science, Georgia Institute of Technology	JHILL326@GATECH.EDU
Fanny Yang	FAN.YANG@INF.ETHZ.CH
Department of Computer Science, ETH Zurich	

CAN ACTIVE LEARNING PREEMPTIVELY MITIGATE FAIRNESS ISSUES?

Frédéric Branchaud-Charron, Parmida Atighehchian, Pau Rodríguez, Grace Abuhamad, Alexandre Lacoste ServiceNow {fr.branchaud-charron,parmida.atighehchian}@servicenow.com

Standard active learning can improve fairness Group-imbalanced classification



Improving class and group imbalanced classification
with uncertainty-based active learning

Alexandru Tifrea* Department of Computer Science, ETH Zurich	TIFREAA@INF.ETHZ.CH
John Hill* Department of Computer Science, Georgia Institute of Technology	JHILL326@GATECH.EDU
Fanny Yang Department of Computer Science, ETH Zurich	FAN.YANG@INF.ETHZ.CH

CAN ACTIVE LEARNING PREEMPTIVELY MITIGATE FAIRNESS ISSUES?

Frédéric Branchaud-Charron; Parmida Atighehchian; Pau Rodríguez, Grace Abuhamad, Alexandre Lacoste ServiceNow {fr.branchaud-charron,parmida.atighehchian}@servicenow.com

Takeaways

- no explicit group information used anywhere during sampling/learning!
- not all AL strategies help (e.g. coreset sampling)
- U-AL+ERM can be better than passive learning + reweighting

Using group labels for active learning

Acquire labels for samples selected according to:

$$P_{AL}(X) \sim \frac{1}{2} \lambda_{diff}(X) + \frac{1}{2} \lambda_{fair}(X)$$

$$\lambda_{diff}$$

$$y=0$$

$$y=0$$

$$y=1$$

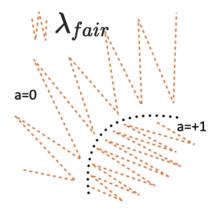
$$h_1$$

$$h_1$$

$$h_2$$

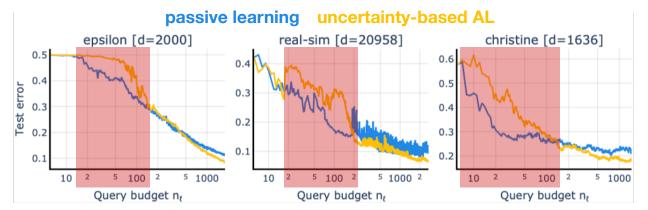
Informativeness criterion: Disagreement region of ensemble Fair Active Learning in Low-Data Regimes

Romain Camilleri, Andrew Wagenmaker, Jamie Morgenstern, Lalit Jain, Kevin Jamieson University of Washington, Seattle, WA {camilr,ajwagen,jamiemmt,jamieson}@cs.washington.edu,lalitj@uw.edu



Fairness criterion: Uniform mass on all groups

Limitations of uncertainty-based AL



Err[U-AL] > Err[PL]

U-AL can be on par with or even worse than passive learning

- For high-dimensional data
- For data with lots of label noise

Margin-based sampling in high dimensions: When being active is less efficient than staying passive

Alexandru Țifrea $^{*\,1}\,$ Jacob Clarysse $^{*\,1}\,$ Fanny Yang 1

On the Relationship between Data Efficiency and Error for Uncertainty Sampling

Stephen Mussmann¹ Percy Liang¹

Summary

A few examples of fair learning algorithms that

- (1) Have fewer data requirements than standard fairness mitigations
- (2) Leverage unlabeled data to improve fairness

Open questions

- Impact of class/group label noise
- Interplay between fairness and other evaluation metrics, beyond accuracy

Privacy can mean a lot of things but two things are important to define:

Privacy can mean a lot of things but two things are important to define:

• What is the private entity ?

Privacy can mean a lot of things but two things are important to define:

- What is the private entity ?
- What can the privacy adversary observe ?

• **Differential Privacy** prevents leakage of *training data from the trained model*

- **Differential Privacy** prevents leakage of *training data from the trained model*
- **Multi-Party Computation** allows multiple data holders to collaboratively execute a computation without learn too much about other parties' data

- **Differential Privacy** prevents leakage of *training data from the trained model*
- **Multi-Party Computation** allows multiple data holders to collaboratively execute a computation without learn too much about other parties' data
- **Fully Homomorphic encryption** based methods allow training or testing on encrypted data without decrypting the data.

- **Differential Privacy** prevents leakage of *training data from the trained model*
- **Multi-Party Computation** allows multiple data holders to collaboratively execute a computation without learn too much about other parties' data
- **Fully Homomorphic encryption** based methods allow training or testing on encrypted data without decrypting the data.
- Many more PETs like Trusted Execution Environments (TEE), Contextual Integrity etc.

- **Differential Privacy** prevents leakage of *training data from the trained model*
- Multi-Party Computation allows multiple data holders to collaboratively execute a computation without learn too much about other parties' data
- **Fully Homomorphic encryption** based methods allow training or testing on encrypted data without decrypting the data.
- Many more PETs like Trusted Execution Environments (TEE), Contextual Integrity etc.

"Data is a precious thing and will last longer than the systems themselves"

Sir Tim-Berners Lee

US Census and Privacy

Vulnerability of sparse data

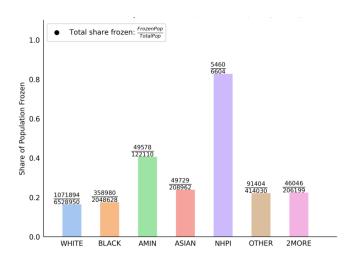
WHOSE 2010 CENSUS RESPONSES CAN BE RECONSTRUCTED WITH CERTAINTY? Aloni Cohen and JN Matthews

University of Chicago

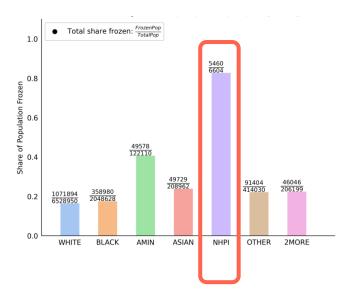
• 2010 US Census privacy protections were vulnerable to reconstruction attacks.

- 2010 US Census privacy protections were vulnerable to reconstruction attacks.
- Some groups are disproportionately affected: <u>80% of NHPI (Native Hawaiian</u> <u>& Pacific Islander)</u> responses in NC were fully reconstructed.

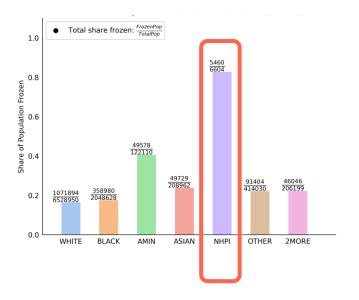
- 2010 US Census privacy protections were vulnerable to reconstruction attacks.
- Some groups are disproportionately affected: <u>80% of NHPI (Native Hawaiian</u> <u>& Pacific Islander)</u> responses in NC were fully reconstructed.



- 2010 US Census privacy protections were vulnerable to reconstruction attacks.
- Some groups are disproportionately affected: <u>80% of NHPI (Native Hawaiian</u> <u>& Pacific Islander)</u> responses in NC were fully reconstructed.

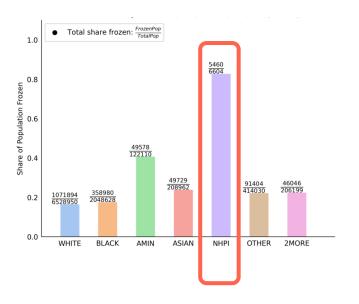


- 2010 US Census privacy protections were vulnerable to reconstruction attacks.
- Some groups are disproportionately affected: <u>80% of NHPI (Native Hawaiian</u> <u>& Pacific Islander</u>) responses in NC were fully reconstructed.
- Similar inferences were also shown about age and more accurate in smaller "blocks"



- 2010 US Census privacy protections were vulnerable to reconstruction attacks.
- Some groups are disproportionately affected: <u>80% of NHPI (Native Hawaiian</u> <u>& Pacific Islander</u>) responses in NC were fully reconstructed.
- Similar inferences were also shown about age and more accurate in smaller "blocks"

WHOSE 2010 CENSUS RESPONSES CAN BE RECONSTRUCTED WITH CERTAINTY? Aloni Cohen and JN Matthews University of Chicago



Takeaway: Often privacy violations are stronger in smaller communities.

Cost of Privacy

Cost of Privacy

Informal Theorem: If you try to answer too many questions too accurately about a dataset, there's a clever way for an attacker to piece together (almost) the entire original data.

Cost of Privacy

Informal Theorem: If you try to answer too many questions too accurately about a dataset, there's a clever way for an attacker to piece together (almost) the entire original data.

If the original dataset's privacy is to be protected, some accuracy needs to be sacrificed. The study of DP tries to control this trade-off.

Making an Algorithm Differentially Private

Making an Algorithm Differentially Private

Differential Privacy

Differential Privacy

• **Differential Privacy** noises the algorithm's output to limit the exposure of any single data point

Differential Privacy

- **Differential Privacy** noises the algorithm's output to limit the exposure of any single data point
- A **Differentially Private** ML algorithm produces similar models irrespective of whether Alice's data is in the dataset or Bob's

Differential Privacy

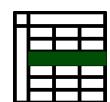
- **Differential Privacy** noises the algorithm's output to limit the exposure of any single data point
- A **Differentially Private** ML algorithm produces similar models irrespective of whether Alice's data is in the dataset or Bob's

Alice

Differential Privacy

- **Differential Privacy** noises the algorithm's output to limit the exposure of any single data point
- A **Differentially Private** ML algorithm produces similar models irrespective of whether Alice's data is in the dataset or Bob's

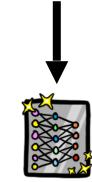
Bob



Alice

Differential Privacy

- **Differential Privacy** noises the algorithm's output to limit the exposure of any single data point
- A **Differentially Private** ML algorithm produces similar models irrespective of whether Alice's data is in the dataset or Bob's



Bob

The replacement of a single data record minimally impacts the trained model

Differential Privacy (Defn.)

Differential Privacy (Defn.)

Consider any

- Neighbouring datasets S_1 and S_2
- Output set Q

Then Algorithm is $(arepsilon,\delta) ext{-DP}$ if

Differential Privacy (Defn.)

Consider any

- Neighbouring datasets S_1 and S_2
- Output set Q

Then Algorithm is $(arepsilon,\delta) ext{-DP}$ if

Bob

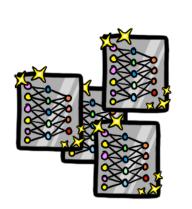
Alice

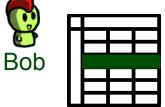
Differential Privacy (Defn.)

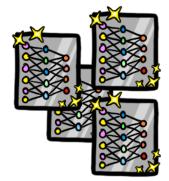
Consider any

- Neighbouring datasets S_1 and S_2
- Output set Q

Then Algorithm is $(arepsilon,\delta) ext{-DP}$ if





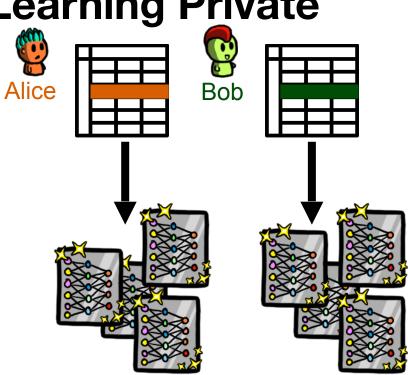


Differential Privacy (Defn.)

Consider any

- Neighbouring datasets S_1 and S_2
- Output set Q

Then Algorithm is $(arepsilon,\delta) ext{-DP}$ if



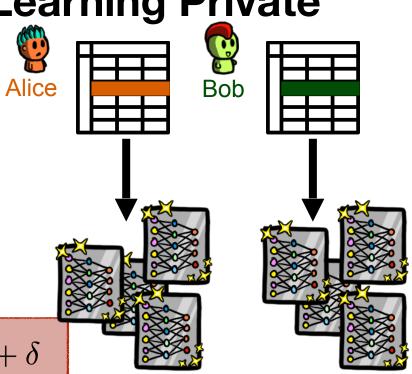
Differential Privacy (Defn.)

Consider any

- Neighbouring datasets S_1 and S_2
- Output set Q

Then Algorithm is (ε, δ) -DP if

$$\mathbb{P}\left(\mathcal{A}(\mathbf{S_1}) \in \mathcal{Q}\right) \le \mathbf{e}^{\epsilon} \mathbb{P}\left(\mathcal{A}(\mathbf{S_2}) \in \mathcal{Q}\right) + \delta$$



One simple formula for implementing DP :

One simple formula for implementing DP :

• **Compute the algorithm's sensitivity**: how much can the output change if the *worst* data point in the *worst* input dataset changes

One simple formula for implementing DP :

- **Compute the algorithm's sensitivity**: how much can the output change if the *worst* data point in the *worst* input dataset changes
- Add noise proportional to that change magnitude

One simple formula for implementing DP :

- **Compute the algorithm's sensitivity**: how much can the output change if the *worst* data point in the *worst* input dataset changes
- Add noise proportional to that change magnitude

Today, we will look at two ways in which data quality affects the performance of Differentially Private Algorithms

One simple formula for implementing DP :

- **Compute the algorithm's sensitivity**: how much can the output change if the *worst* data point in the *worst* input dataset changes
- Add noise proportional to that change magnitude

Today, we will look at two ways in which data quality affects the performance of Differentially Private Algorithms

• Good data requires less added noise for the same level of privacy

One simple formula for implementing DP :

- **Compute the algorithm's sensitivity**: how much can the output change if the *worst* data point in the *worst* input dataset changes
- Add noise proportional to that change magnitude

Today, we will look at two ways in which data quality affects the performance of Differentially Private Algorithms

- Good data requires less added noise for the same level of privacy
- Some parts of data domain <u>incurs disproportionately higher loss</u> due to the Differential privacy than others

Differential Privacy and Disparate Impact

DP and Disparate Impact

Examples in Practice

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

 $\label{eq:constraint} \begin{array}{l} ^{1} Wikimedia \ Foundation - htriedman@wikimedia.org \\ ^{2} Tumult \ Labs - science@tmlt.io \end{array}$

• Wikimedia foundation released their pageview statistics Differentially Privately.

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

 $^1 Wikimedia Foundation - htriedman@wikimedia.org <math display="inline">^2 Tumult \ Labs - science@tmlt.io$

- Wikimedia foundation released their pageview statistics Differentially Privately.
- In their global release, both drop rate and spurious rate were less than 1%

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

 $\label{eq:linear} \begin{array}{l} ^{1} Wikimedia \ Foundation \ - \ httiedman@wikimedia.org \\ ^{2} Tumult \ Labs \ - \ science@tmlt.io \\ \end{array}$

- Wikimedia foundation released their pageview statistics Differentially Privately.
- In their global release, both drop rate and spurious rate were less than 1%

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

 $\label{eq:wikimedia} \begin{array}{l} ^1 Wikimedia \ Foundation - htriedman@wikimedia.org \\ ^2 Tumult \ Labs - science@tmlt.io \\ \end{array}$

- Wikimedia foundation released their pageview statistics Differentially Privately.
- In their global release, both drop rate and spurious rate were less than 1%
- But, the "Micronesia problem"

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

 $\label{eq:wikimedia} \begin{array}{l} ^1 Wikimedia \ Foundation - htriedman@wikimedia.org \\ ^2 Tumult \ Labs - science@tmlt.io \end{array}$

- Wikimedia foundation released their pageview statistics Differentially Privately.
- In their global release, both drop rate and spurious rate were less than 1%
- But, the "Micronesia problem"
 - Seven Pacific Island nations (low traffic)

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

- Wikimedia foundation released their pageview statistics Differentially Privately.
- In their global release, both drop rate and spurious rate were less than 1%
- But, the "Micronesia problem"
 - Seven Pacific Island nations (low traffic)
 - Naive first implementation

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

- Wikimedia foundation released their pageview statistics Differentially Privately.
- In their global release, both drop rate and spurious rate were less than 1%
- But, the "Micronesia problem"
 - Seven Pacific Island nations (low traffic)
 - Naive first implementation
 - >99% of published data is spurious

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

- Wikimedia foundation released their pageview statistics Differentially Privately.
- In their global release, both drop rate and spurious rate were less than 1%
- But, the "Micronesia problem"
 - Seven Pacific Island nations (low traffic)
 - Naive first implementation
 - >99% of published data is spurious
 - 9 out of 23 subcontinental regions have spurious rate of >25%

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

 $\label{eq:wikimedia} \begin{array}{l} ^1 Wikimedia \ Foundation - htriedman@wikimedia.org \\ ^2 Tumult \ Labs - science@tmlt.io \\ \end{array}$

- Wikimedia foundation released their pageview statistics Differentially Privately.
- In their global release, both drop rate and spurious rate were less than 1%
- But, the "Micronesia problem"
 - Seven Pacific Island nations (low traffic)
 - Naive first implementation
 - >99% of published data is spurious
 - 9 out of 23 subcontinental regions have spurious rate of >25%
 - Africa, Oceania, Central Asia, and the Caribbean

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

Publishing Wikipedia usage data with strong privacy guarantees

Temilola Adeleye¹, Skye Berghel², Damien Desfontaines², Michael Hay², Isaac Johnson¹, Cléo Lemoisson¹, Ashwin Machanavajjhala², Tom Magerlein², Gabriele Modena¹, David Pujol², Daniel Simmons-Marengo², and Hal Triedman¹

• Africa, Oceania, Central Asia, and the Caribbean

DP and Disparate Impact

Controlled experimental setting

How unfair is private learning?				
Amartya Sanyal ^{*1,3}	Yaxi Hu ^{*2}	Fanny Yang ³		
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.				

40 binary attributes for each image

How unfair is private learning?					
Amartya Sanyal ^{*1,3}	Yaxi Hu*2	Fanny Yang ³			
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.					

eyeglass

bangs

Pointy nose

40 binary attributes for each image

How unfair is private learning? Amartya Sanyal^{*1,3} Yaxi Hu^{*2} Fanny Yang³ ¹ETH AI Center, ETH Zürich, Zürich, Switzerland. ²Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³Department of Computer Science, ETH Zürich, Zürich, Switzerland.

40 binary attributes -> 240 subpopulations.

eyeglass

bangs

Pointy nose

40 binary attributes for each image

eyeglass

bangs

Pointy nose

 How unfair is private learning?					
Amartya Sanyal ^{*1,3}	Yaxi Hu ^{*2}	Fanny Yang ³			
² Department of Ma	nter, ETH Zürich, Zürich, Switz thematics, ETH Zürich, Zürich uter Science, ETH Zürich, Züri	, Switzerland.			

40 binary attributes -> 240 subpopulations.

• <u>Subpopulation 1</u> Eyeglass, no bangs, no pointy nose,...

40 binary attributes for each image

eyeglass

bangs

Pointy nose

How unfair is private learning? Amartya Sanyal^{*1,3} Yaxi Hu^{*2} Fanny Yang³ ¹ETH AI Center, ETH Zürich, Zürich, Switzerland. ²Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³Department of Computer Science, ETH Zürich, Zürich, Switzerland.

40 binary attributes -> 240 subpopulations.

- <u>Subpopulation 1</u> Eyeglass, no bangs, no pointy nose,...
- <u>Subpopulation 2</u> Eyeglass, bangs, no pointy nose,...

40 binary attributes for each image

How unfair is private learning? Amartya Sanyal^{*1,3} Yaxi Hu^{*2} Fanny Yang³ ¹ETH AI Center, ETH Zürich, Zürich, Switzerland. ²Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³Department of Computer Science, ETH Zürich, Zürich, Switzerland.

40 binary attributes -> 240 subpopulations.

- <u>Subpopulation 1</u> Eyeglass, no bangs, no pointy nose,...
- <u>Subpopulation 2</u> Eyeglass, bangs, no pointy nose,...

• ...

bangs

eyeglass

Pointy nose

40 binary attributes for each image

eyeglass

bangs

Pointy nose

How unfair is private learning?		
Amartya Sanyal ^{*1,3}		

40 binary attributes -> 240 subpopulations.

- <u>Subpopulation 1</u> Eyeglass, no bangs, no pointy nose,...
- <u>Subpopulation 2</u> Eyeglass, bangs, no pointy nose,...

•••

40 binary attributes for each image

How unfair is private learning? Amartya Sanyal^{*1,3} Yaxi Hu^{*2} Fanny Yang³ ¹ETH AI Center, ETH Zürich, Zürich, Switzerland. ²Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³Department of Computer Science, ETH Zürich, Zürich, Switzerland.

40 binary attributes -> 240 subpopulations.

- <u>Subpopulation 1</u> Eyeglass, no bangs, no pointy nose,...
- <u>Subpopulation 2</u> Eyeglass, bangs, no pointy nose,...
- ...

. . .

Subpopulation 2⁴⁰

eyeglass

bangs

Pointy nose

40 binary attributes for each image

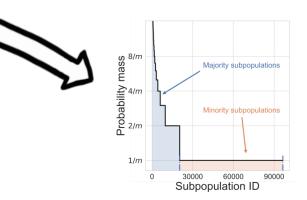
How unfair is private learning? Amartya Sanyal*^{1,3} Yaxi Hu*2 Fanny Yang³ ¹ETH AI Center, ETH Zürich, Zürich, Switzerland. ²Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³Department of Computer Science, ETH Zürich, Zürich, Switzerland.

40 binary attributes -> 240 subpopulations.

- <u>Subpopulation 1</u> Eyeglass, no bangs, no pointy nose,...
- <u>Subpopulation 2</u> Eyeglass, bangs, no pointy nose,...
- ...

. . .

Subpopulation 2⁴⁰



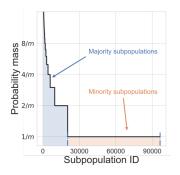
eyeglass

bangs

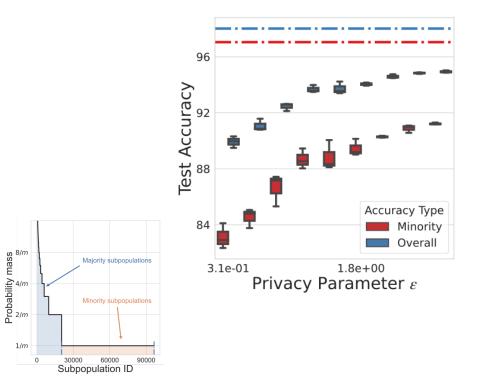
Pointy nose

Controlled experimental setting

How unfair is private learning?				
Amartya Sanyal ^{*1,3}	Yaxi Hu*2	Fanny Yang ³		
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.				

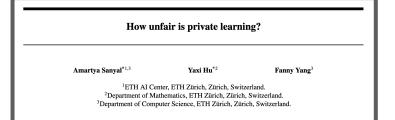


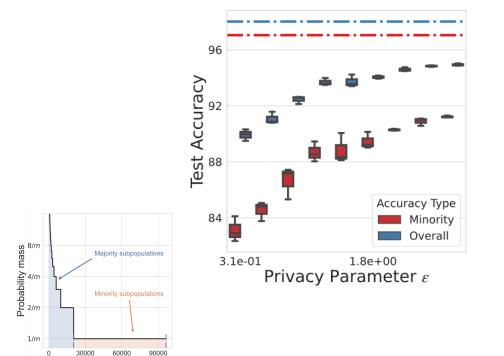
Controlled experimental setting



How unfair is private learning?				
Amartya Sanyal ^{*1,3}	Yaxi Hu*2	Fanny Yang ³		
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.				

Controlled experimental setting



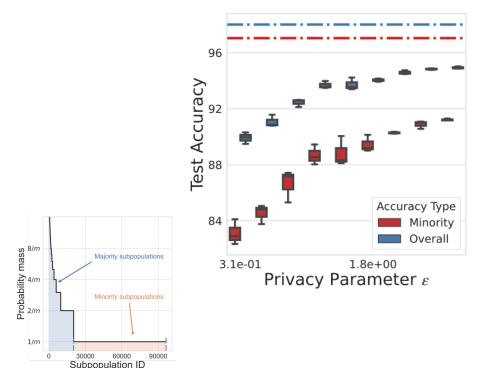


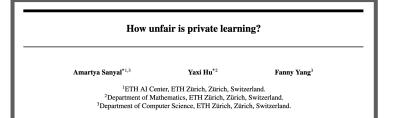
Subpopulation ID

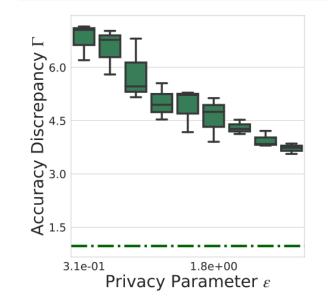
r

3.1e-01 1.8e+00 Privacy Parameter ε

Controlled experimental setting





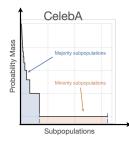


Trade-off in long-tailed data

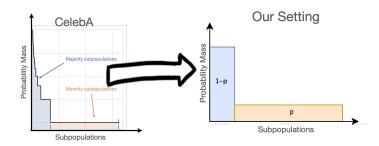
How unfair is private learning?				
Amartya Sanyal ^{*1,3}	Yaxi Hu ^{*2}	Fanny Yang ³		
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.				

How unfair is private learning?			
Amartya Sanyal ^{*1,3}	Yaxi Hu ^{*2}	Fanny Yang ³	_
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.			

How unfair is private learning?				
Amartya Sanyal ^{*1,3}	Yaxi Hu ^{*2}	Fanny Yang ³		
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.				

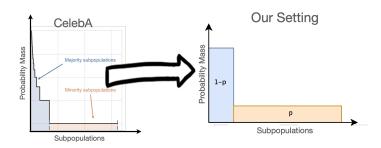


How unfair is private learning?				
Amartya Sanyal ^{*1,3}	Yaxi Hu ^{*2}	Fanny Yang ³		
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.				



How unfair is private learning? Amartya Sanyal*^{1,3} Yaxi Hu*² Fanny Yang³ ¹ETH AI Center, ETH Zürich, Zürich, Switzerland. ²Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³Department of Computer Science, ETH Zürich, Zürich, Switzerland.

If
$$rac{N}{m} o c$$
 as $N,m o \infty$



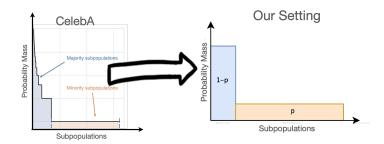
How unfair is private learning?			
Amartya Sanyal ^{*1,3}	Yaxi Hu ^{*2}	Fanny Yang ³	
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.			

Theorem Consider a *long-tailed distribution* with N sub-populations and sample an m-sized dataset. Consider any (ε, δ) -DP algorithm \mathcal{A} that achieves *low error* on this dataset.

If $rac{N}{m} o c$ as $N,m o \infty$

We prove a lower bound on the accuracy discrepancy of \mathcal{A} which

• Increases with the privacy of \mathcal{A} i.e. smaller (ε, δ)



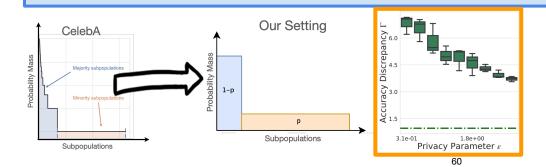
How unfair is private learning?			
Amartya Sanyal ^{*1,3}	Yaxi Hu ^{*2}	Fanny Yang ³	
¹ ETH AI Center, ETH Zürich, Zürich, Switzerland. ² Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³ Department of Computer Science, ETH Zürich, Zürich, Switzerland.			

Theorem Consider a *long-tailed distribution* with N sub-populations and sample an m-sized dataset. Consider any (ε, δ) -DP algorithm \mathcal{A} that achieves *low error* on this dataset.

If $rac{N}{m} o c$ as $N,m o \infty$

We prove a lower bound on the accuracy discrepancy of \mathcal{A} which

• Increases with the privacy of ${\mathcal A}$ i.e. smaller $(arepsilon,\delta)$



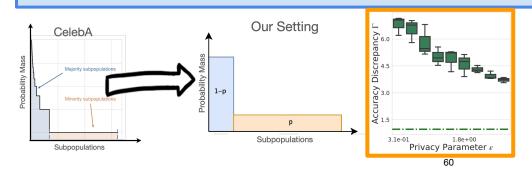
How unfair is private learning? Amartya Sanyal^{*1,3} Yaxi Hu^{*2} Fanny Yang³ ¹ETH AI Center, ETH Zürich, Zürich, Switzerland. ²Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³Department of Computer Science, ETH Zürich, Zürich, Switzerland.

Theorem Consider a *long-tailed distribution* with N sub-populations and sample an m-sized dataset. Consider any (ε, δ) -DP algorithm \mathcal{A} that achieves *low error* on this dataset.

f
$$rac{N}{m} o c$$
 as $N,m o \infty$

We prove a lower bound on the accuracy discrepancy of \mathcal{A} which

- Increases with the privacy of \mathcal{A} i.e. smaller (ε, δ)
- Increases with long-tailed nature of data i.e. relative number of minority subpopulations c



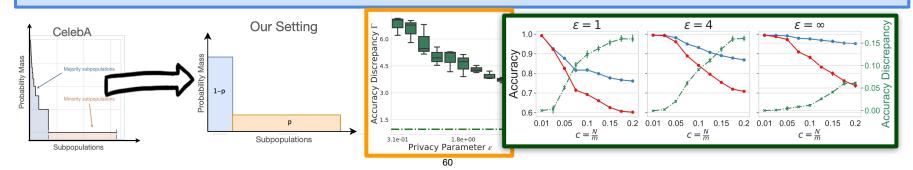
How unfair is private learning? Amartya Sanyal^{*1,3} Yaxi Hu^{*2} Fanny Yang³ ¹ETH AI Center, ETH Zürich, Zürich, Switzerland. ²Department of Mathematics, ETH Zürich, Zürich, Switzerland. ³Department of Computer Science, ETH Zürich, Zürich, Switzerland.

Theorem Consider a *long-tailed distribution* with N sub-populations and sample an m-sized dataset. Consider any (ε, δ) -DP algorithm \mathcal{A} that achieves *low error* on this dataset.

f
$$rac{N}{m} o c$$
 as $N,m o \infty$

We prove a lower bound on the accuracy discrepancy of \mathcal{A} which

- Increases with the privacy of \mathcal{A} i.e. smaller (ε, δ)
- Increases with long-tailed nature of data i.e. relative number of minority subpopulations c



Fundamental Impossibility

Fundamental Impossibility

Trade-Offs between Fairness and Privacy in Machine Learning

Sushant Agarwal University of Waterloo, Canada sushant.agarwal@uwaterloo.ca

On the Compatibility of Privacy and Fairness

Rachel Cummings* Varun Gupta* Dhamma Kimpara* Jamie Morgenstern*

Fundamental Impossibility

Trade-Offs between Fairness and Privacy in Machine Learning

Sushant Agarwal University of Waterloo, Canada sushant.agarwal@uwaterloo.ca

On the Compatibility of Privacy and Fairness

Rachel Cummings* Varun Gupta* Dhamma Kimpara* Jamie Morgenstern*

Theorem For any hypothesis class \mathcal{H} , no algorithm can simultaneously be $(\varepsilon, 0)$ -DP for $\varepsilon < \infty$ and always output a $h \in \mathcal{H}$ that satisfies equal opportunity and has error less than for any constant classifier.

Fundamental Impossibility

Trade-Offs between Fairness and Privacy in Machine Learning

Sushant Agarwal University of Waterloo, Canada sushant.agarwal@uwaterloo.ca

On the Compatibility of Privacy and Fairness

Rachel Cummings* Varun Gupta* Dhamma Kimpara* Jamie Morgenstern*

Theorem For any hypothesis class \mathcal{H} , no algorithm can simultaneously be $(\varepsilon, 0)$ -DP for $\varepsilon < \infty$ and always output a $h \in \mathcal{H}$ that satisfies equal opportunity and has error less than for any constant classifier.

- Proof idea:
 - Obs 1. If a classifier h has non-zero probability to be output under algorithm \mathcal{A} on dataset S_1 , it also has non-zero probability to be output on dataset S_2 , for all S_2 .

Fundamental Impossibility

Trade-Offs between Fairness and Privacy in Machine Learning

Sushant Agarwal University of Waterloo, Canada sushant.agarwal@uwaterloo.ca

On the Compatibility of Privacy and Fairness

Rachel Cummings* Varun Gupta* Dhamma Kimpara* Jamie Morgenstern*

Theorem For any hypothesis class \mathcal{H} , no algorithm can simultaneously be $(\varepsilon, 0)$ -DP for $\varepsilon < \infty$ and always output a $h \in \mathcal{H}$ that satisfies equal opportunity and has error less than for any constant classifier.

- Proof idea:
 - Obs 1. If a classifier h has non-zero probability to be output under algorithm \mathcal{A} on dataset S_1 , it also has non-zero probability to be output on dataset S_2 , for all S_2 .
 - Obs 2. Construct two datasets S_1 , S_2 such that no classifier, except a constant classifier can be simultaneously fair on both.

Other causes

Apart from the properties of the data, other reasons are also known to exacerbate unfairness for Differentially Private models

Apart from the properties of the data, other reasons are also known to exacerbate unfairness for Differentially Private models

In particular two factors are usually isolated,

Apart from the properties of the data, other reasons are also known to exacerbate unfairness for Differentially Private models

In particular two factors are usually isolated,

• Gradient Clipping

Apart from the properties of the data, other reasons are also known to exacerbate unfairness for Differentially Private models

In particular two factors are usually isolated,

- Gradient Clipping
- **Noise** addition

Apart from the properties of the data, other reasons are also known to exacerbate unfairness for Differentially Private models

In particular two factors are usually isolated,

- Gradient Clipping
- **Noise** addition

Differential Privacy Has Disparate Impact on Model Accuracy			
Eugene Bagdasaryan Omid Poursaeed* Vitaly Shmatikov Cornell Tech Cornell Tech Cornell Tech eugene@cs.cornell.edu op63@cornell.edu shmat@cs.cornell.edu			

Apart from the properties of the data, other reasons are also known to exacerbate unfairness for Differentially Private models

In particular two factors are usually isolated,

- Gradient Clipping
- **Noise** addition

Differentially Private Empirical Risk Minimization under the Fairness Lens

 Cuong Tran
 My H. Dinh
 Ferdinando Fioretto

 Syracuse University
 Syracuse University
 Syracuse University

 ctran@syr.edu
 mydinh@syr.edu
 ffiorett@syr.edu

Differential Pri N	vacy Has Dispa Model Accuracy	•
Eugene Bagdasaryan	Omid Poursaeed*	Vitaly Shmatikov
Cornell Tech	Cornell Tech	Cornell Tech
eugene@cs.cornell.edu	op63@cornell.edu	shmat@cs.cornell.edu

Apart from the properties of the data, other reasons are also known to exacerbate unfairness for Differentially Private models

In particular two factors are usually isolated,

- Gradient Clipping
- **Noise** addition

Differentially Private Empirical Risk Minimization under the Fairness Lens

Cuong Tran Syracuse University ctran@syr.edu
 My H. Dinh
 Ferdinando Fioretto

 Syracuse University
 Syracuse University

 mydinh@syr.edu
 ffiorett@syr.edu

Differential Privacy Has Disparate Impact on Model Accuracy		
Eugene Bagdasaryan	Omid Poursaeed*	Vitaly Shmatikov
Cornell Tech	Cornell Tech	Cornell Tech
eugene@cs.cornell.edu	op63@cornell.edu	shmat@cs.cornell.edu

Removing Disparate Impact on Model Accuracy in Differentially Private Stochastic Gradient Descent

Depeng Xu	Wei Du	Xintao Wu
University of Arkansas	University of Arkansas	University of Arkansas
Fayetteville, AR, USA	Fayetteville, AR, USA	Fayetteville, AR, USA
depengxu@uark.edu	wd005@uark.edu	xintaowu@uark.edu

Good data requires less noise

Favourable data properties

Favourable data properties

• Privacy guarantees are unconditional hold for all datasets.

Favourable data properties

- Privacy guarantees are unconditional hold for all datasets.
- Generally, these worst case bound yields a large "cost of DP".

Favourable data properties

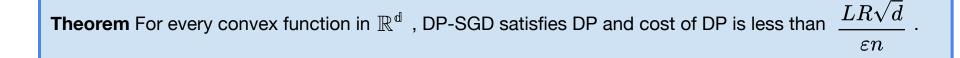
- Privacy guarantees are unconditional hold for all datasets.
- Generally, these worst case bound yields a large "cost of DP".

Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds

Adam Smith* †

Raef Bassily*

Abhradeep Thakurta[‡]



Favourable data properties

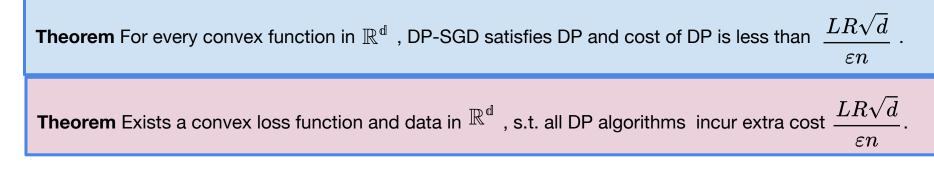
- Privacy guarantees are unconditional hold for all datasets.
- Generally, these worst case bound yields a large "cost of DP".

Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds

Adam Smith*[†]

Raef Bassily*

Abhradeep Thakurta[‡]



DP with "good" data

Favourable data properties

- Privacy guarantees are unconditional hold for all datasets.
- Generally, these worst case bound yields a large "cost of DP".

Can we do better for "nice" datasets ?

Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds

Adam Smith*[†]

Raef Bassily*

Abhradeep Thakurta[‡]

Theorem For every convex function in \mathbb{R}^d , DP-SGD satisfies DP and cost of DP is less than $\frac{LR\sqrt{d}}{dR}$

arepsilon n

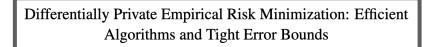
Theorem Exists a convex loss function and data in \mathbb{R}^d , s.t. all DP algorithms incur extra cost $\frac{LR\sqrt{d}}{\varepsilon n}$

DP with "good" data

Favourable data properties

- Privacy guarantees are unconditional hold for all datasets.
- Generally, these worst case bound yields a large "cost of DP".

Can we do better for "nice" datasets ?



Abhradeep Thakurta[‡]

Adam Smith*[†]

Raef Bassilv*

Niceness of the training set

Theorem For every convex function in \mathbb{R}^d , DP-SGD satisfies DP and cost of DP is less than $\frac{LR\sqrt{d}}{\varepsilon n}$.

Theorem Exists a convex loss function and data in \mathbb{R}^d , s.t. all DP algorithms incur extra cost $\frac{LR\sqrt{d}}{\varepsilon n}$

DP with "good" data

Favourable data properties

- Privacy guarantees are unconditional hold for all datasets.
- Generally, these worst case bound yields a large "cost of DP".

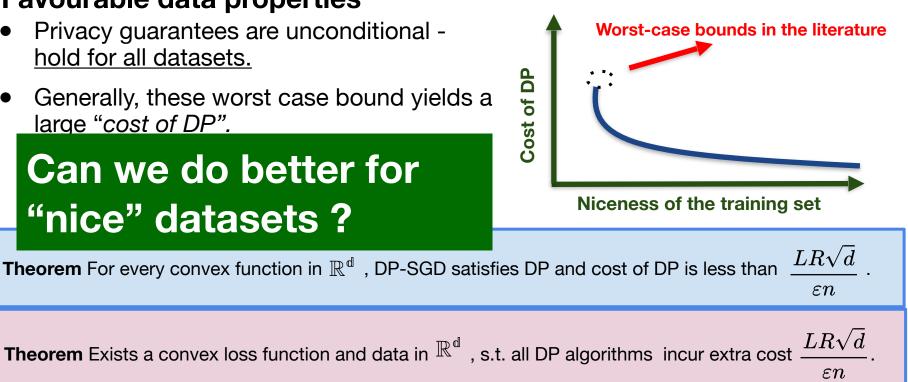
Can we do better for "nice" datasets ?

Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds

Adam Smith*[†]

Raef Bassilv*

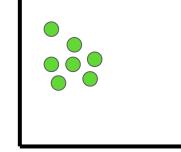
Abhradeep Thakurta[‡]



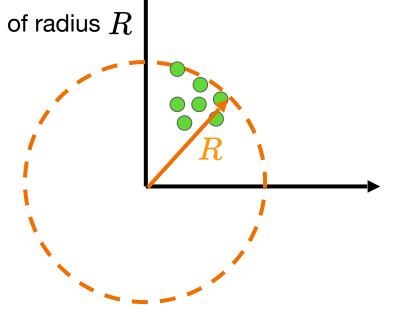
- DP must protect against worst-case changes.
- A naïve DP estimator clips data to a ball of radius R
- Noise is calibrated to R;

- DP must protect against worst-case changes.
- A naïve DP estimator clips data to a ball of radius R
- Noise is calibrated to R;

- DP must protect against worst-case changes.
- A naïve DP estimator clips data to a ball of radius R
- Noise is calibrated to R;

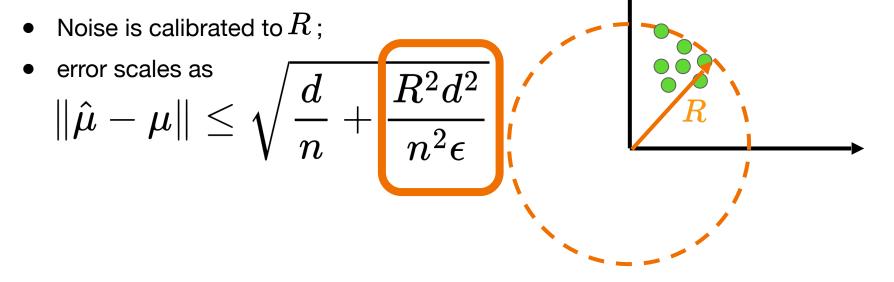


- DP must protect against worst-case changes.
- A naïve DP estimator clips data to a ball of radius R
- Noise is calibrated to R;



- DP must protect against worst-case changes.
- A naïve DP estimator clips data to a ball of radius R
- Noise is calibrated to R;
- error scales as $\|\hat{\mu}-\mu\| \leq \sqrt{rac{d}{n}+rac{R^2d^2}{n^2\epsilon}}$

- DP must protect against worst-case changes.
- A naïve DP estimator clips data to a ball of radius R



- DP must protect against worst-case changes.
- A naïve DP estimator clips data to a ball of radius R
- Noise is calibrated to R; • error scales as $\|\hat{\mu} - \mu\| \le \sqrt{\frac{d}{n} + \frac{R^2 d^2}{n^2 \epsilon}}$

- DP must protect against worst-case changes:
- A naïve DP estimator clips data to a ball of radius R

П

 \boldsymbol{n}

 $R^2 d^2$

 $n^2\epsilon$

65

- Noise is calibrated to R ;
- error scales as

$$\|\hat{\mu}-\mu\|\leq \sqrt{2}$$

- DP must protect against worst-case changes.
- A naïve DP estimator clips data to a ball of radius R

 \boldsymbol{n}

- Noise is calibrated to R;
- error scales as

$$\|\hat{\mu}-\mu\|\leq \sqrt{}$$

- Heavy tails or outliers force R to be large.
- Worst-case sensitivity leads to high noise and error.

 $R^2 d^2$

 $n^2\epsilon$

FriendlyCore: Practical Differentially Private Aggregation Eliad Tsfadia* Edith Cohen* Haim Kaplan* Yishay Mansour* Uri Stemmer*

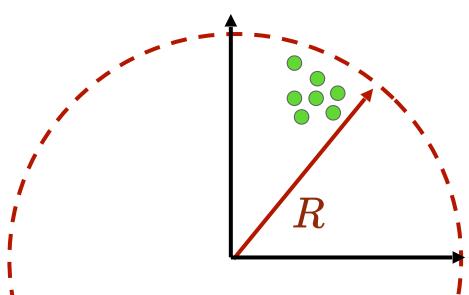
In many settings, most points lie in a ball of radius

In many settings, most points lie in a ball of radius

FriendlyCore: Practical Differentially Private Aggregation			
Eliad Tsfadia*	Edith Cohen* Uri S	Haim Kaplan* Stemmer*	Yishay Mansour*

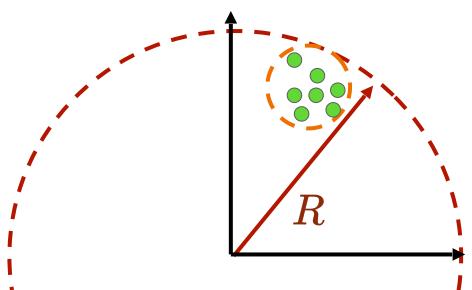
In many settings, most points lie in a ball of radius

FriendlyCore: Practical Differentially Private Aggregation Eliad Tsfadia* Edith Cohen* Haim Kaplan* Yishay Mansour* Uri Stemmer*



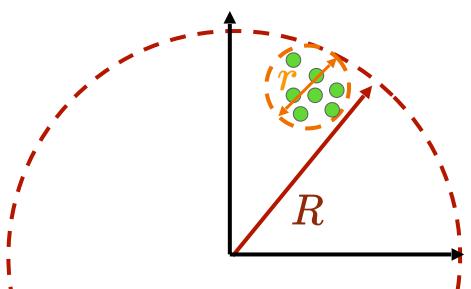
FriendlyCore: Practical Differentially Private Aggregation				
Eliad Tsfadia*	Eliad Tsfadia* Edith Cohen* Haim Kaplan* Yishay Mansour* Uri Stemmer*			

In many settings, most points lie in a ball of radius



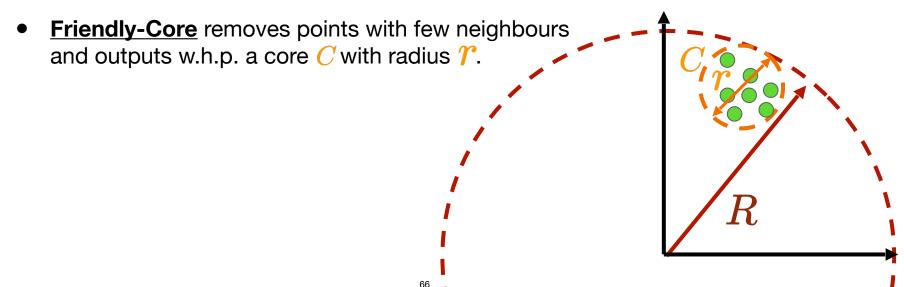
FriendlyCore: Practical Differentially Private Aggregation				
Eliad Tsfadia*	Eliad Tsfadia* Edith Cohen* Haim Kaplan* Yishay Mansour* Uri Stemmer*			

In many settings, most points lie in a ball of radius



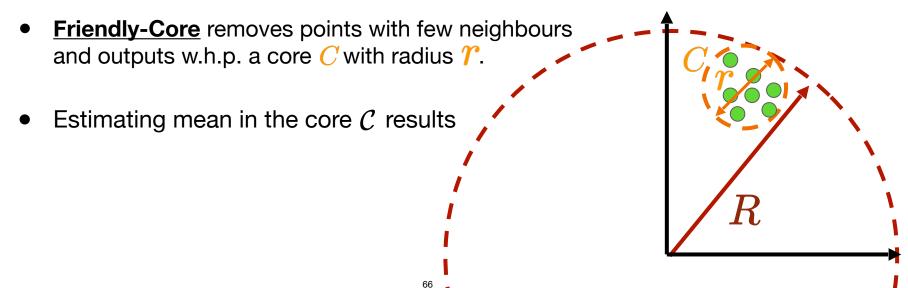
FriendlyCore: Practical Differentially Private Aggregation Eliad Tsfadia* Edith Cohen* Haim Kaplan* Yishay Mansour* Uri Stemmer*

In many settings, most points lie in a ball of radius



FriendlyCore: Practical Differentially Private Aggregation Eliad Tsfadia* Edith Cohen* Haim Kaplan* Yishay Mansour* Uri Stemmer*

In many settings, most points lie in a ball of radius



FriendlyCore: Practical Differentially Private Aggregation Eliad Tsfadia* Edith Cohen* Haim Kaplan* Yishay Mansour* Uri Stemmer*

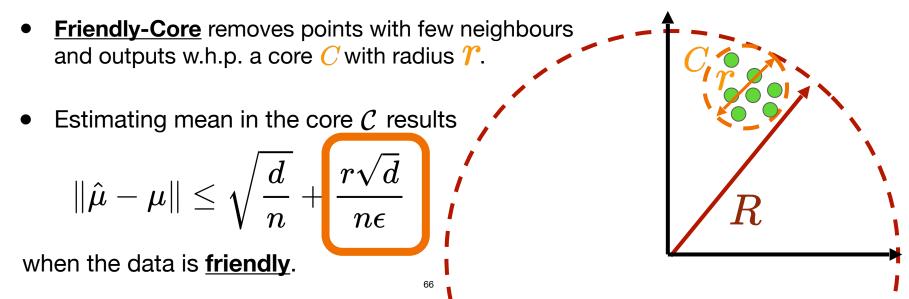
In many settings, most points lie in a ball of radius

- A dataset is **friendly** if every two points have a common neighbor within r
- Friendly-Core removes points with few neighbours and outputs w.h.p. a core C with radius T.
- Estimating mean in the core $\mathcal C$ results

$$\|\hat{\mu}-\mu\|\leq \sqrt{rac{d}{n}}+rac{r\sqrt{d}}{n\epsilon}$$

FriendlyCore: Practical Differentially Private Aggregation			
Eliad Tsfadia* Edith Cohen* Haim Kaplan* Yishay Mansour* Uri Stemmer*			

In many settings, most points lie in a ball of radius



Private Geometric Median					
Mahdi Haghifam*	Mahdi Haghifam* Thomas Steinke [†] Jonathan Ullman [‡]				

Private Geometric Median			
Mahdi Haghifam* Thomas Steinke [†] Jonathan Ullman [‡]			

• Related task is estimating the geometric median: solving the following

$$\sum \| heta - x_i\|_2$$

Private Geometric Median				
Mahdi Haghifam* Thomas Steinke [†] Jonathan Ullman [‡]				

• Related task is estimating the geometric median: solving the following

$$\sum \| heta - x_i\|_2$$

• Solving this problem with DP-SGD yields DP cost $\underline{R\sqrt{d}}$

arepsilon

Private Geometric Median			
Mahdi Haghifam*	Thomas Steinke †	Jonathan Ullman [‡]	

• Related task is estimating the geometric median: solving the following

$$\sum \| heta - x_i\|_2$$

- Solving this problem with DP-SGD yields DP cost $\underline{R\sqrt{d}}$
- **<u>HSU24</u>** proposes an algorithm which yields DP cost arepsilon

Private Geometric Median				
Mahdi Haghifam* Thomas Steinke [†] Jonathan Ullman [‡]				

• Related task is estimating the geometric median: solving the following

$$\sum \| heta - x_i\|_2$$

- Solving this problem with DP-SGD yields DP cost $\underline{R\sqrt{d}}$
- **HSU24** proposes an algorithm which yields DP cost

$$(\text{effective diameter}) \frac{\sqrt{a}}{\epsilon}$$

Private Geometric Median				
Mahdi Haghifam* Thomas Steinke † Jonathan Ullman ‡				

Х

• Related task is estimating the geometric median: solving the following

- Solving this problem with DP-SGD yields DP cost $\underline{R\sqrt{d}}$
- HSU24 proposes an algorithm which yields DP cost

(effective diameter)

 $\| heta-x_i\|_2$

Private Geometric Median				
Mahdi Haghifam* Thomas Steinke [†] Jonathan Ullman [‡]				

X

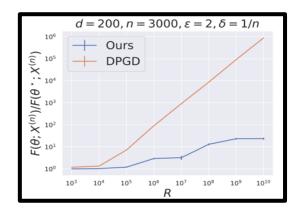
X

• Related task is estimating the geometric median: solving the following

 $\| heta - x_i\|_2$

(effective diameter)

- Solving this problem with DP-SGD yields DP cost $\underline{R\sqrt{d}}$
- HSU24 proposes an algorithm which yields DP cost



DP-PCA: Statistically Optimal and Differentially Private PCA

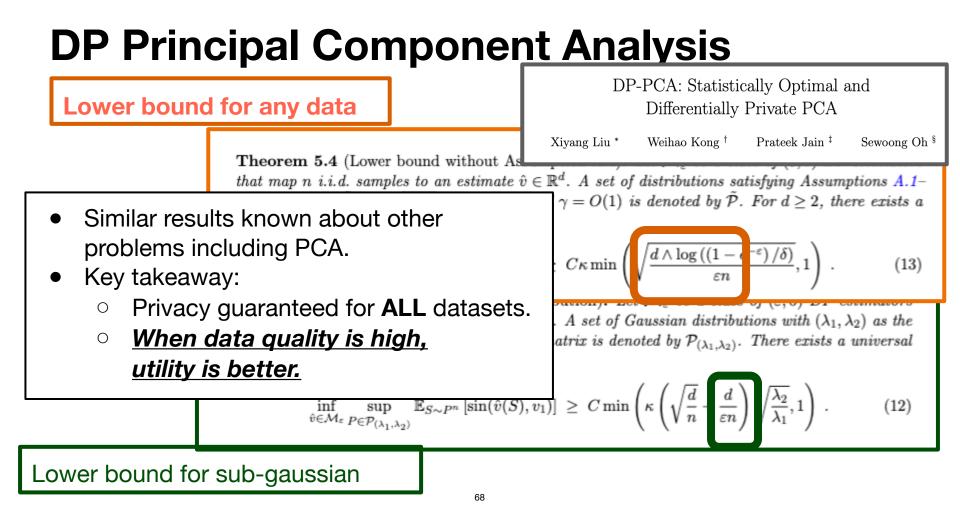
Xiyang Liu *	Weihao Kong †	Prateek Jain ‡	Sewoong Oh \S
--------------	------------------------	----------------------------	-----------------

Lower bound for any data DP-PCA: Statistically Optimal and Differentially Private PCA $Xiyang Liu * Weihao Kong ^{\dagger} Prateek Jain ^{\ddagger} Sewoong Oh ^{\$}$ $Theorem 5.4 (Lower bound without As that map n i.i.d. samples to an estimate <math>\hat{v} \in \mathbb{R}^d$. A set of distributions satisfying Assumptions A.1-A.3 with $M = \tilde{O}(d + \sqrt{n\varepsilon/d}), V = O(d)$ and $\gamma = O(1)$ is denoted by \tilde{P} . For $d \ge 2$, there exists a universal constant C > 0 such that $\inf_{\hat{v} \in \mathcal{M}_{\varepsilon}} \sup_{P \in \tilde{\mathcal{P}}} \mathbb{E}_{S \sim P^n} [\sin(\hat{v}(S), v_1)] \ge C\kappa \min\left(\sqrt{\frac{d \wedge \log((1 - \frac{-\varepsilon}{\varepsilon})/\delta)}{\varepsilon n}}, 1\right). \quad (13)$

DP-PCA: Statistically Optimal and Lower bound for any data Differentially Private PCA Xiyang Liu * Weihao Kong[†] Prateek Jain[‡] Sewoong Oh[§] Theorem 5.4 (Lower bound without As that map n i.i.d. samples to an estimate $\hat{v} \in \mathbb{R}^d$. A set of distributions satisfying Assumptions A.1-A.3 with $M = \tilde{O}(d + \sqrt{n\varepsilon/d})$, V = O(d) and $\gamma = O(1)$ is denoted by $\tilde{\mathcal{P}}$. For $d \geq 2$, there exists a universal constant C > 0 such that $\inf_{\hat{v}\in\mathcal{M}_{\varepsilon}}\sup_{P\in\tilde{\mathcal{P}}}\mathbb{E}_{S\sim P^{n}}\left[\sin(\hat{v}(S),v_{1})\right] \geq C\kappa\min\left(\sqrt{\frac{d\wedge\log\left(\left(1-e^{-\varepsilon}\right)/\delta\right)}{\varepsilon n}},1\right).$ (13)Incorem ore (Lower bound, Gaussian distribution), Lee that map n i.i.d. samples to an estimate $\hat{v} \in \mathbb{R}^d$. A set of Gaussian distributions with (λ_1, λ_2) as the first and second eigenvalues of the covariance matrix is denoted by $\mathcal{P}_{(\lambda_1,\lambda_2)}$. There exists a universal constant C > 0 such that $\inf_{\hat{v} \in \mathcal{M}_{\varepsilon}} \sup_{P \in \mathcal{P}_{(\lambda_1, \lambda_2)}} \mathbb{E}_{S \sim P^n} \left[\sin(\hat{v}(S), v_1) \right] \geq C \min \left(\kappa \left(\sqrt{\frac{d}{n}} + \frac{d}{\varepsilon n} \right) \sqrt{\frac{\lambda_2}{\lambda_1}}, 1 \right) .$ (12)

DP-PCA: Statistically Optimal and Lower bound for any data Differentially Private PCA Xiyang Liu * Weihao Kong[†] Prateek Jain[‡] Sewoong Oh[§] Theorem 5.4 (Lower bound without As that map n i.i.d. samples to an estimate $\hat{v} \in \mathbb{R}^d$. A set of distributions satisfying Assumptions A.1-A.3 with $M = O(d + \sqrt{n\varepsilon/d})$, V = O(d) and $\gamma = O(1)$ is denoted by $\tilde{\mathcal{P}}$. For $d \ge 2$, there exists a universal constant C > 0 such that $\inf_{\hat{v}\in\mathcal{M}_{\varepsilon}}\sup_{P\in\tilde{\mathcal{P}}}\mathbb{E}_{S\sim P^{n}}\left[\sin(\hat{v}(S), v_{1})\right] \geq C\kappa\min\left(\sqrt{\frac{d\wedge\log\left(\left(1-e^{-\varepsilon}\right)/\delta\right)}{\varepsilon n}}, 1\right).$ (13)I HOUTCHI DID (LOWEL DOUNDI, OGGODIGH GIDTIDUTOR), DON that map n i.i.d. samples to an estimate $\hat{v} \in \mathbb{R}^d$. A set of Gaussian distributions with (λ_1, λ_2) as the first and second eigenvalues of the covariance matrix is denoted by $\mathcal{P}_{(\lambda_1,\lambda_2)}$. There exists a universal constant C > 0 such that $\inf_{\hat{v} \in \mathcal{M}_{\varepsilon}} \sup_{P \in \mathcal{P}_{(\lambda_1, \lambda_2)}} \mathbb{E}_{S \sim P^n} \left[\sin(\hat{v}(S), v_1) \right] \geq C \min \left(\kappa \left(\sqrt{\frac{d}{n}} - \frac{d}{\varepsilon n} \right) \sqrt{\frac{\lambda_2}{\lambda_1}}, 1 \right) \,.$ (12)

Lower bound for sub-gaussian



DP SGD

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu∗ Ilya Mironov∗ Li Zhang∗

Ian Goodfellow[†] Kunal Talwar*

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu* Ilya Mironov* Li Zhang* lan Goodfellow[†] Kunal Talwar*

 DP-SGD is the standard workhorse for DP Machine Learning algorithms.

 DP-SGD is the standard workhorse for DP Machine Learning algorithms.

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu* Ilya Mironov* Li Zhang*

lan Goodfellow[†] Kunal Talwar*

Algorithm 1 Differentially private SGD (Outline) **Input:** Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta)$ = $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly for $t \in [T]$ do Take a random sample L_t with sampling probability L/N**Compute gradient** For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ Clip gradient $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

• DP-SGD is the standard workhorse for DP Machine Learning algorithms.

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu* Ilya Mironov* Li Zhang*

Ian Goodfellow[†] Kunal Talwar*

Algorithm 1 Differentially private SGD (Outline)
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L , gradient norm bound C .
Initialize θ_0 randomly
for $t \in [T]$ do
(1) Take a random sample L_t with sampling probability L/N
Compute gradient
For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$
Clip gradient
$ar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \maxig(1, rac{\ \mathbf{g}_t(x_i)\ _2}{C}ig)$
Add noise
$ ilde{\mathbf{g}}_t \leftarrow rac{1}{L} \left(\sum_i ar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) ight)$
Descent
$ heta_{t+1} \leftarrow heta_t - \eta_t ilde{\mathbf{g}}_t$
Output θ_T and compute the overall privacy cost (ε, δ)
using a privacy accounting method.

• DP-SGD is the standard workhorse for DP Machine Learning algorithms.

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu* Ilya Mironov* Li Zhang*

Ian Goodfellow[†] Kunal Talwar*

Algorithm 1 Differentially private SGD (Outline)
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) =$
$\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale
σ , group size L, gradient norm bound C.
Initialize θ_0 randomly
for $t \in [T]$ do
(1) Take a random sample L_t with sampling probability L/N
Compute gradient
(2) For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$
Clip gradient
$ar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, rac{\ \mathbf{g}_t(x_i)\ _2}{C} ight)$
Add noise
$ ilde{\mathbf{g}}_t \leftarrow rac{1}{L} \left(\sum_i ar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) ight)$
Descent
$ heta_{t+1} \leftarrow heta_t - \eta_t ilde{\mathbf{g}}_t$
Output θ_T and compute the overall privacy cost (ε, δ)
using a privacy accounting method.

• DP-SGD is the standard workhorse for DP Machine Learning algorithms.

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu* Ilya Mironov* Li Zhang*

Algorithm 1 Differentially private SGD (Outline)
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L , gradient norm bound C .
Initialize θ_0 randomly
for $t \in [T]$ do
(1) ^{Take a random sample L_t with sampling probability L/N}
(2) For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$
- Clip gradient
(3) $\overline{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$
Add noise
$ ilde{\mathbf{g}}_t \leftarrow rac{1}{L} \left(\sum_i ar{\mathbf{g}}_t(x_i) + \mathcal{N}(0,\sigma^2 C^2 \mathbf{I}) ight)$
Descent
$ heta_{t+1} \leftarrow heta_t - \eta_t ilde{\mathbf{g}}_t$
Output θ_T and compute the overall privacy cost (ε, δ)
using a privacy accounting method.

• DP-SGD is the standard workhorse for DP Machine Learning algorithms.

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu* Ilya Mironov* Li Zhang*

Ian Goodfellow[†] Kunal Talwar*

Algorithm 1 Differentially private SGD (Outline)
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L , gradient norm bound C .
Initialize θ_0 randomly
for $t \in [T]$ do
(1) ^{Take} a random sample L_t with sampling probability L/N
Compute gradient
(2) For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$
Clip gradient
(3) $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$
$ \begin{array}{c} \text{Add noise} \\ \textbf{(4)} \ \tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right) \end{array} $
Descent
$ heta_{t+1} \leftarrow heta_t - \eta_t \widetilde{\mathbf{g}}_t$
Output θ_T and compute the overall privacy cost (ε, δ)
using a privacy accounting method.

• DP-SGD is the standard workhorse for DP Machine Learning algorithms.

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu* Ilya Mironov* Li Zhang* lan Goodfellow[†] Kunal Talwar*

Algorithm 1 Differentially private SGD (Outline)			
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale σ , group size L , gradient norm bound C .			
Initialize θ_0 randomly			
$\mathbf{for} \ t \in [T] \ \mathbf{do}$			
(1) ^{Take} a random sample L_t with sampling probability L/N			
(2) Compute gradient For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$			
(3) $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$			
$ \begin{array}{c} \textbf{Add noise} \\ \textbf{(4)} \tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right) \end{array} $			
using a privacy accounting method.			

- DP-SGD is the standard workhorse for DP Machine Learning algorithms.
- As we saw earlier, the added noise scales with dimensionality of params

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu∗ Ilya Mironov∗ Li Zhang∗

1	Algorithm 1 Differentially private SGD (Outline)		
Ī	Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) =$		
$\frac{1}{N}\sum_{i} \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale			
σ , group size L, gradient norm bound C.			
	Initialize θ_0 randomly		
	for $t \in [T]$ do		
	(1) Take a random sample L_t with sampling probability L/N		
Compute gradient			
	Z For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$		
Clip gradient			
	3) $\mathbf{\bar{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$		
(Add noise 4) $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$		
	$\mathbf{T} \mathbf{g}_t \leftarrow \frac{1}{L} \left(\sum_i \mathbf{g}_t(x_i) + \mathcal{N}(0, \delta \in \mathbf{I}) \right)$ Descent		
(5	$\overline{\theta}_{t+1} \leftarrow \overline{\theta}_t - \eta_t \tilde{\mathbf{g}}_t$		
-	Cutput θ_T and compute the overall privacy cost (c, δ)		
	using a privacy accounting method.		
-			

- DP-SGD is the standard workhorse for DP Machine Learning algorithms.
- As we saw earlier, the added noise scales with dimensionality of params
- To avoid this, they conduct DP-PCA on data before doing DP-SGD.

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu∗ Ilya Mironov∗ Li Zhang∗

	Algorithm 1 Differentially private SGD (Outline)	
	Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) =$	
	$\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale	
	σ , group size L, gradient norm bound C.	
	Initialize θ_0 randomly	
Ŀ	for $t \in [T]$ do	
	(1) Take a random sample L_t with sampling probability L/N	
Compute gradient		
	(2) For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$	
	Clip gradient	
	(3) $\mathbf{\bar{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$	
Г	Add noise	
	(4) $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$	
	Descent	
	5) $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$	
Ľ	Output θ_T and compute the overall privacy cost $(\varepsilon, 5)$	
	using a privacy accounting method.	

- DP-SGD is the standard workhorse for DP Machine Learning algorithms.
- As we saw earlier, the added noise scales with dimensionality of params
- To avoid this, they conduct DP-PCA on data before doing DP-SGD.

But,

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu∗ Ilya Mironov∗ Li Zhang∗

Algorithm 1 Differentially private SGD (Outline)		
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) =$		
$\frac{1}{N}\sum_{i} \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale		
σ , group size L, gradient norm bound C.		
Initialize θ_0 randomly		
for $t \in [T]$ do		
(1) Take a random sample L_t with sampling proba	ibility	
Compute gradient		
(2) For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$		
Clip gradient		
(3) $\mathbf{\bar{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$		
Add noise (4) r_{1} (7) (4) (7) (7) (7) (7) (7) (7)		
(4) $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$		
Descent		
(5) $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$		
Output θ_T and compute the overall privacy cost	$-(\varepsilon, \delta)$	
using a privacy accounting method.		

- DP-SGD is the standard workhorse for DP Machine Learning algorithms.
- As we saw earlier, the added noise scales with dimensionality of params
- To avoid this, they conduct DP-PCA on data before doing DP-SGD.

But,

1. DP-PCA requires additional time

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu∗ Ilya Mironov∗ Li Zhang∗ lan Goodfellow[†] Kunal Talwar*

	Algorithm 1 Differentially private SGD (Outline)			
	Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) =$			
	$\frac{1}{N}\sum_{i} \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale			
	σ , group size L, gradient norm bound C.			
	Initialize θ_0 randomly			
	for $t \in [T]$ do			
	(1) ^{Take} a random sample L_t with sampling probability L/N			
	Compute gradient			
	(2) For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$			
	Clip gradient			
	(3) $\overline{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$			
	Add noise $(1)^{2} = (1)^$			
	$ (4) \tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right) $			
Π	Descent			
	(5) $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$			
Ч	Output θ_T and compute the overall privacy cost (ε, δ)			
	using a privacy accounting method.			

- DP-SGD is the standard workhorse for DP Machine Learning algorithms.
- As we saw earlier, the added noise scales with dimensionality of params
- To avoid this, they conduct DP-PCA on data before doing DP-SGD.

But,

- 1. DP-PCA requires additional time
- 2. DP-PCA incurs additional privacy cost

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu∗ Ilya Mironov∗ Li Zhang∗ lan Goodfellow[†] Kunal Talwar*

Algorithm 1 Differentially private SGD (Outline)	
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta)$ =	
$\frac{1}{N}\sum_{i} \mathcal{L}(\theta, x_i)$. Parameters: learning rate η_t , noise scale	
σ , group size L, gradient norm bound C.	
Initialize θ_0 randomly	
for $t \in [T]$ do	
(1) ^{Take a random sample L_t with sampling probability L/N}	
Compute gradient	
(2) For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$	
Clip gradient	
(3) $\overline{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$	
Add noise	
(4) $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$	
Descent	
(5) $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$	
Output θ_T and compute the overall privacy cost (c, δ)	
using a privacy accounting method.	

Leveraging intrinsic low dimensionality

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence Systems
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.yang@inf.ethz.ch	amsa@di.ku.dk

Leveraging intrinsic low dimensionality

Idea 1: Use identically distributed **public unlabelled** data to find low rank subspace for projection

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence Systems
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.yang@inf.ethz.ch	amsa@di.ku.dk

Leveraging intrinsic low dimensionality

Idea 1: Use identically distributed **public unlabelled** data to find low rank subspace for projection

 But natural data is not inherently low rank in pixel space

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence System
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.vang@inf.ethz.ch	amsa@di.ku.dk

Leveraging intrinsic low dimensionality

Idea 1: Use identically distributed **public unlabelled** data to find low rank subspace for projection

- But natural data is not inherently low rank in pixel space
- Maybe we need to find the right representation space

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence System.
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.vang@inf.ethz.ch	amsa@di.ku.dk

Leveraging intrinsic low dimensionality

Idea 1: Use identically distributed **public unlabelled** data to find low rank subspace for projection

- But natural data is not inherently low rank in pixel space
- Maybe we need to find the right representation space

Idea 2: Use any **public unlabelled pre-training** data for representation learning.

70

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence Systems
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.yang@inf.ethz.ch	amsa@di.ku.dk

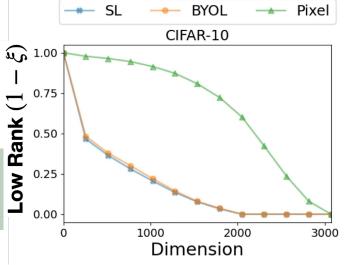
Leveraging intrinsic low dimensionality

Idea 1: Use identically distributed **public unlabelled** data to find low rank subspace for projection

- But natural data is not inherently low rank in pixel space
- Maybe we need to find the right representation space

Idea 2: Use any **public unlabelled pre-training** data for representation learning.

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence System
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.yang@inf.ethz.ch	amsa@di.ku.dk



Leveraging intrinsic low dimensionality

Idea 1: Use identically distributed **public unlabelled** data to find low rank subspace for projection

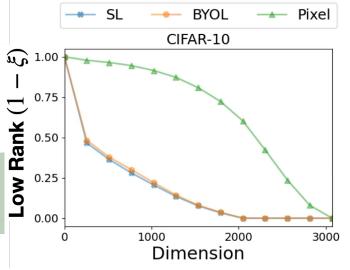
- But natural data is not inherently low rank in pixel space
- Maybe we need to find the right representation space

Idea 2: Use any **public unlabelled pre-training** data for representation learning.

$1-\xi$ = low rank reconstruction error

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence Systems
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.vang@inf.ethz.ch	amsa@di.ku.dk



Leveraging intrinsic low dimensionality

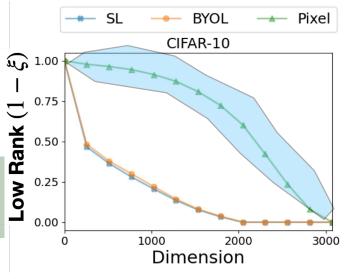
Idea 1: Use identically distributed **public unlabelled data** to find low rank subspace for projection

- But natural data is not inherently low rank in pixel space
- Maybe we need to find the right representation space

Idea 2: Use any public unlabelled pre-training data for representation learning.

$1 - \xi$ = low rank reconstruction error

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence System
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.vang@inf.ethz.ch	amsa@di.ku.dk



Leveraging intrinsic low dimensionality

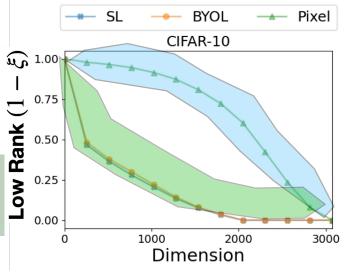
Idea 1: Use identically distributed **public unlabelled** data to find low rank subspace for projection

- But natural data is not inherently low rank in pixel space
- Maybe we need to find the right representation space

Idea 2: Use any **public unlabelled pre-training** data for representation learning.

$1-\xi$ = low rank reconstruction error

Francesco Pinto*	Yaxi Hu*
University of Oxford	Max Planck Institute for Intelligence System.
Oxford, England	Tübingen, Germany
Francesco.pinto@eng.ox.ac.uk	yaxi.hu@tuebingen.mpg.de
Fanny Yang	Amartya Sanyal
ETH Zürich	Max Planck Institute for Intelligence Systems
Zürich, Switzerland	Tübingen, Germany
fan.vang@inf.ethz.ch	amsa@di.ku.dk



Leveraging intrinsic low dimensionality

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)
PILLAR: How to make semi-private learning more
effective
Francesco pinto*
University of Oxford
Oxford, England
Francesco pinto@m.ox.ax.u
University of Xation Learning more
provide the semi-private learning more
provide the semi-private learning more
provide the semi-private learning more
effective

Fanny Yang ETH Zürich Zürich, Switzerland fan.vang@inf.ethz.ch yaxi.hu@tuebingen.mpg.de Amartya Sanyal Max Planck Institute for Intelligence Systems Tübingen, Germany amsa@di.ku.dk

Leveraging intrinsic low dimensionality

PILLAR: How to make semi-private learning more

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

effective

Francesco Pinto* University of Oxford Oxford, England Francesco.pinto@eng.ox.ac.uk Yaxi Hu* Max Planck Institute for Intelligence Systems Tübingen, Germany yaxi.hu@tuebingen.mpg.de

Fanny Yang ETH Zürich Zürich, Switzerland fan.yang@inf.ethz.ch Amartya Sanyal Amartya Sanyal Max Planck Institute for Intelligence Systems Tübingen, Germany amsa@di.ku.dk

Public unlabelled

Leveraging intrinsic low dimensionality

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)
PILLAR: How to make semi-private learning more
effective
Francesco Pinto*
University of Oxford
Max Planck Institute for Intelligence Systems
Oxford, Figuand
Tubingen, Germany

Fanny Yang ETH Zürich Zürich, Switzerland fan.vang@inf.ethz.ch

Francesco.pinto@eng.ox.ac.uk

yaxi.hu@tuebingen.mpg.de Amartya Sanyal Max Planck Institute for Intelligence Systems Tübingen, Germany

amsa@di.ku.dk

Public unlabelled pre-training

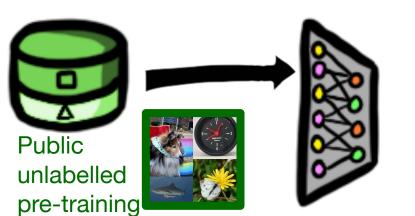
Leveraging intrinsic low dimensionality

PILLAR: How to make semi-private learning more effective

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

Oxford, England Francesco.pinto@eng.ox.ac.uk Yaxi Hu* Max Planck Institute for Intelligence Systems Tübingen, Germany yaxi.hu@tucbingen.mpg.de

Fanny Yang ETH Zürich Zürich, Switzerland fan.yang@inf.ethz.ch



Leveraging intrinsic low dimensionality

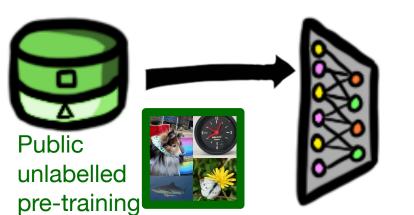
Private labelled

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) PILLAR: How to make semi-private learning more effective Francesco Pinto* Yaxi Hu* University of Oxford Max Planck Institute for Intelligence Systems

Oxford, England Francesco.pinto@eng.ox.ac.uk

Tübingen, Germany yaxi.hu@tuebingen.mpg.de

Fanny Yang ETH Zürich Zürich, Switzerland fan.vang@inf.ethz.ch



2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

PILLAR: How to make semi-private learning more effective

Yaxi Hu*

Tübingen, Germany

Amartya Sanyal

Tübingen, Germany

amsa@di.ku.dk

Max Planck Institute for Intelligence Systems

yaxi.hu@tuebingen.mpg.de

Max Planck Institute for Intelligence Systems

Francesco Pinto*

Oxford, England

Fanny Yang

ETH Zürich

Zürich, Switzerland

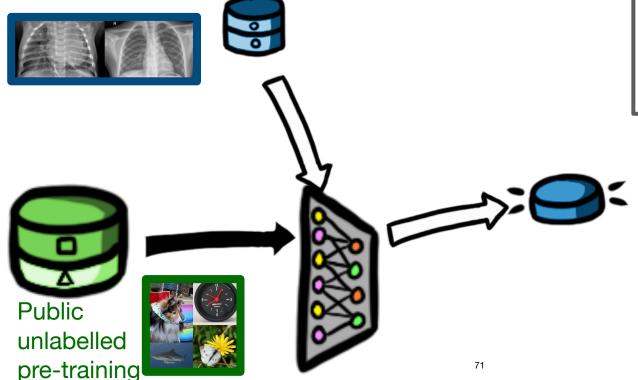
fan.vang@inf.ethz.ch

Francesco.pinto@eng.ox.ac.uk

University of Oxford

Leveraging intrinsic low dimensionality

Private labelled



Leveraging intrinsic low dimensionality Public unlabelled

Private labelled

2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

PILLAR: How to make semi-private learning more effective

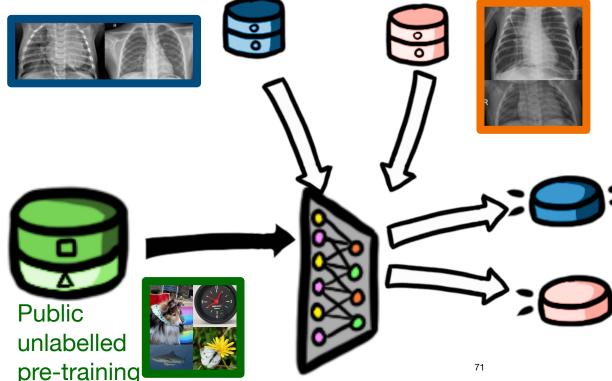
Francesco Pinto* University of Oxford Oxford, England Francesco.pinto@eng.ox.ac.uk

Fanny Yang ETH Zürich Zürich, Switzerland fan.yang@inf.ethz.ch Yaxi Hu* Max Planck Institute for Intelligence Systems Tübingen, Germany yaxi.hu@tuebingen.mpg.de



Leveraging intrinsic low dimensionality Public unlabelled

Private labelled



2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

PILLAR: How to make semi-private learning more effective

Francesco Pinto* University of Oxford Oxford, England Francesco.pinto@eng.ox.ac.uk

Fanny Yang ETH Zürich Zürich, Switzerland fan.vang@inf.ethz.ch Yaxi Hu* Max Planck Institute for Intelligence Systems Tübingen, Germany yaxi.hu@tuebingen.mpg.de

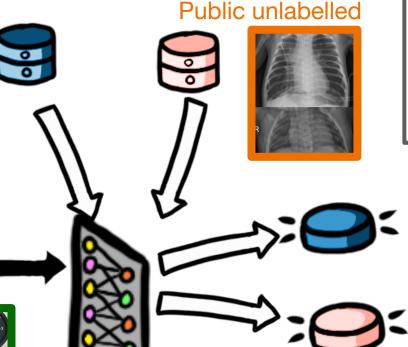
Leveraging intrinsic low dimensionality

Private labelled

Public

unlabelled

pre-training



2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

PILLAR: How to make semi-private learning more effective

Francesco Pinto* University of Oxford Oxford, England Francesco.pinto@eng.ox.ac.uk

Fanny Yang ETH Zürich Zürich, Switzerland fan.yang@inf.ethz.ch

PILLAR

Yaxi Hu* Max Planck Institute for Intelligence Systems Tübingen, Germany yaxi.hu@tuebingen.mpg.de

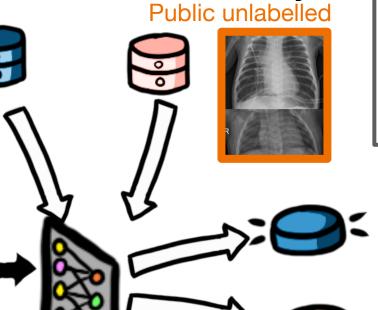
Leveraging intrinsic low dimensionality

Private labelled

Public

unlabelled

pre-training



2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

PILLAR: How to make semi-private learning more effective

Francesco Pinto* University of Oxford Oxford, England Francesco.pinto@eng.ox.ac.uk

Fanny Yang ETH Zürich Zürich, Switzerland fan.yang@inf.ethz.ch

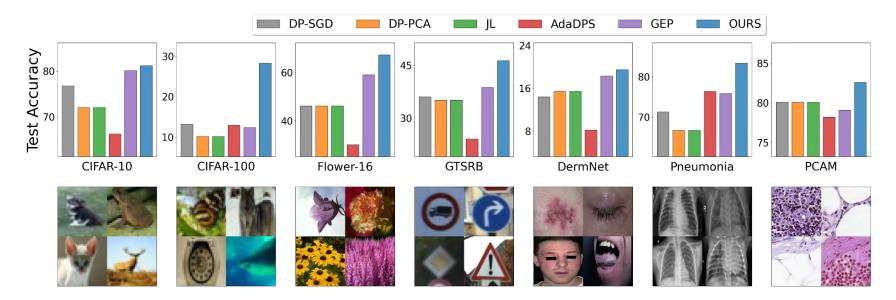
PILLAR

Yaxi Hu* Max Planck Institute for Intelligence Systems Tübingen, Germany yaxi.hu@tuebingen.mpg.de

Amartya Sanyal Max Planck Institute for Intelligence Systems Tübingen, Germany amsa@di.ku.dk

71

Other approaches to leverage unlabelled data



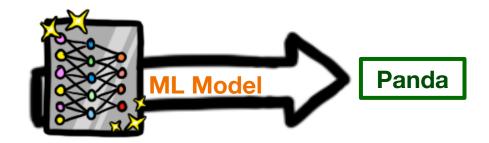
- GEP works in the gradient space
- AdaDPS use public data for gradient pre-conditioning

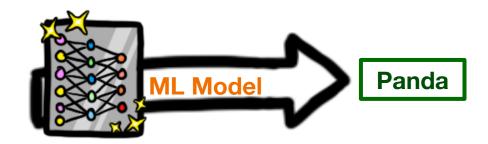
Next

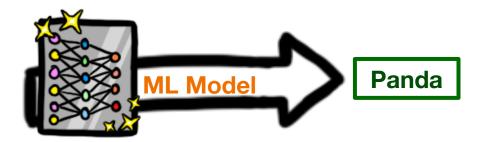
Robustness in Machine Learning

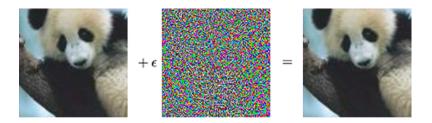
Adversarial Robustness in Machine Learning

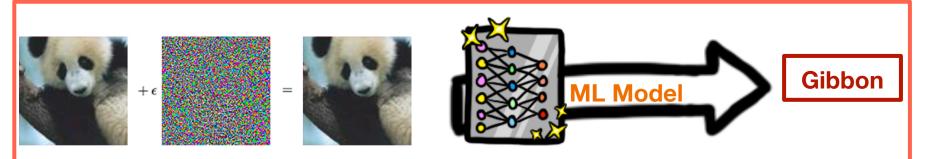
Adversarial Robustness in Machine Learning



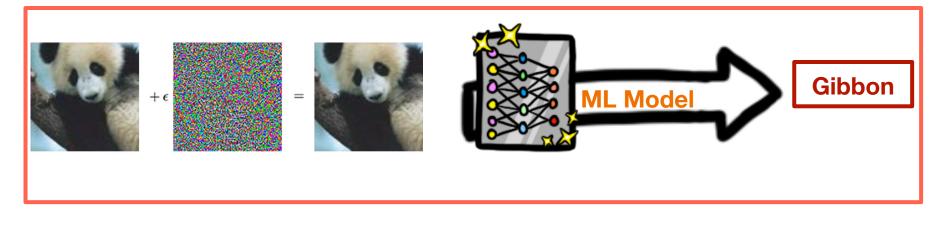


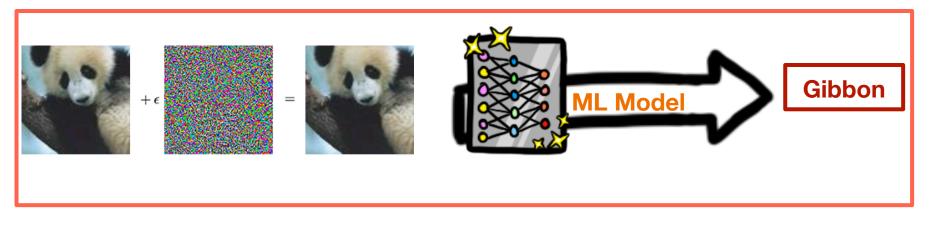




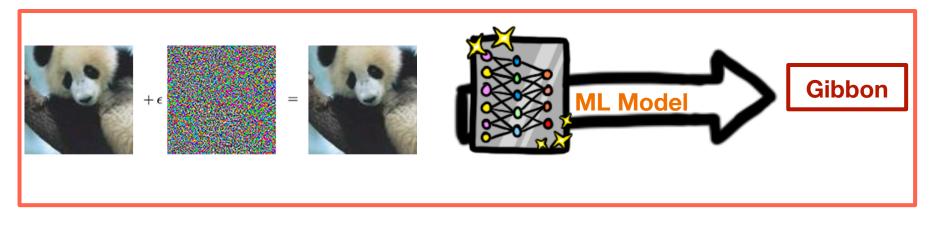


Adversarial Example



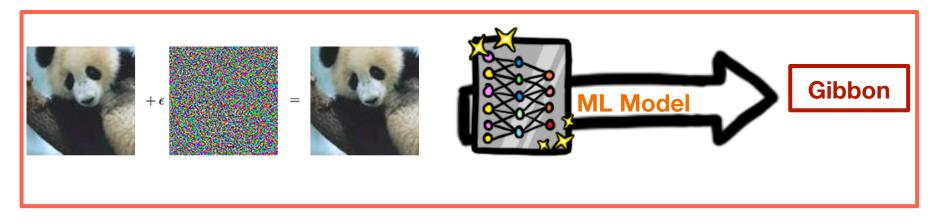


For any distribution \mathcal{P} over $\mathbb{R}^d imes \{0,1\}$ and any binary classifier $f: \mathbb{R}^d \to \{0,1\}$



For any distribution \mathcal{P} over $\mathbb{R}^d imes \{0,1\}$ and any binary classifier $f: \mathbb{R}^d \to \{0,1\}$

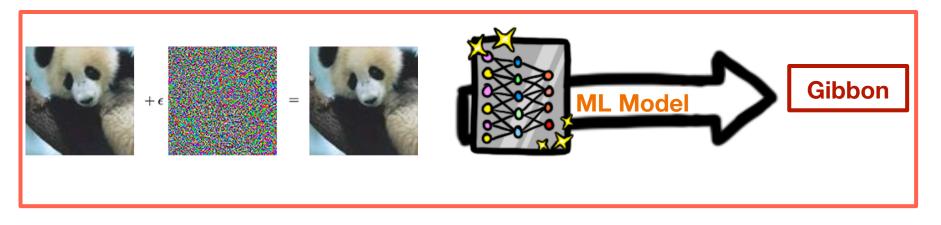
the γ -adversarial error is defined as



For any distribution \mathcal{P} over $\mathbb{R}^d imes \{0,1\}$ and any binary classifier $f: \mathbb{R}^d \to \{0,1\}$

the γ -adversarial error is defined as

$$\Pr_{(\mathrm{x},\mathrm{y})\sim\mathbb{P}}[ext{exists }\mathrm{z}\in\mathcal{B}_{\gamma}\left(\mathrm{x}
ight)\dot{cents}f\left(\mathrm{z}
ight)
eq\mathrm{y}]$$



For any distribution \mathcal{P} over $\mathbb{R}^d imes \{0,1\}$ and any binary classifier $f: \mathbb{R}^d \to \{0,1\}$

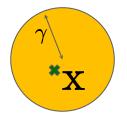
the γ -adversarial error is defined as

$$\Pr_{(\mathrm{x},\mathrm{y})\sim\mathbb{P}}[ext{exists }\mathrm{z}\in\mathcal{B}_{\gamma}\left(\mathrm{x}
ight)\dot{i}f\left(\mathrm{z}
ight)
eq\mathrm{y}]$$

×x

For any distribution \mathcal{P} over $\mathbb{R}^d \times \{0,1\}$ and any binary classifier $f: \mathbb{R}^d \to \{0,1\}$

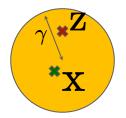
the γ -adversarial error is defined as



$$\Pr_{(\mathrm{x},\mathrm{y})\sim\mathbb{P}}[ext{exists }\mathrm{z}\in oldsymbol{\mathcal{B}}_{\gamma}(\mathrm{x})\dot{:}f(\mathrm{z})
eq \mathrm{y}]$$

For any distribution \mathcal{P} over $\mathbb{R}^d \times \{0,1\}$ and any binary classifier $f: \mathbb{R}^d \to \{0,1\}$

the γ -adversarial error is defined as



$$\Pr_{(\mathrm{x},\mathrm{y})\sim\mathbb{P}}[ext{exists}\,\mathrm{z}\in\mathcal{B}_{\gamma}(\mathrm{x})\,\dot{\cdot}\,f(\mathrm{z})
eq\mathrm{y}]$$

I	UNDERSTANDING	DEEP	LEARNING	REQUIRES	RE-
I	THINKING GENERALIZATION				

Chiyuan Zhang* Massachusetts Institute of Technology chiyuan@mit.edu	

 Samy Bengio
 Moritz Hardt

 Google Brain
 Google Brain

 bengio@google.com
 mrtz@google.com

Benjamin Recht[†] University of California, Berkeley brecht@berkeley.edu Oriol Vinyals Google DeepMind vinyals@google.com

Learning from Noisy Labels with Deep Neural Networks: A Survey Hwanjun Song, Minseek Kim, Dongmin Park, Yooju Shin, Jac-Gil Lee

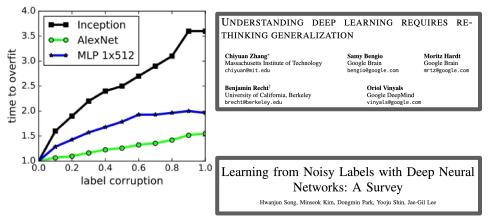
 Trained long enough, NNs fit label noise

UNDERSTANDING DEEP LEARNING REQUIRES RE-THINKING GENERALIZATION

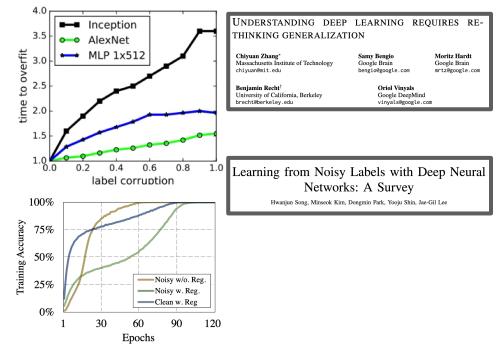
Chiyuan Zhang*	Samy Bengio	Moritz Hardt
Massachusetts Institute of Technology	Google Brain	Google Brain
chiyuan@mit.edu	bengio@google.com	mrtz@google.com
Benjamin Recht [†]	Oriol Vinyals	
University of California, Berkeley	Google DeepMind	
brecht@berkeley.edu	vinyals@google.com	

Learning from Noisy Labels with Deep Neural Networks: A Survey Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, Jae-Gil Lee

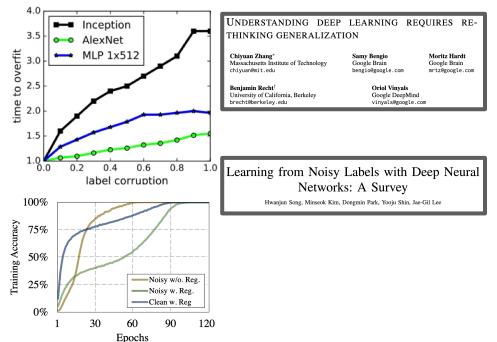
 Trained long enough, NNs fit label noise



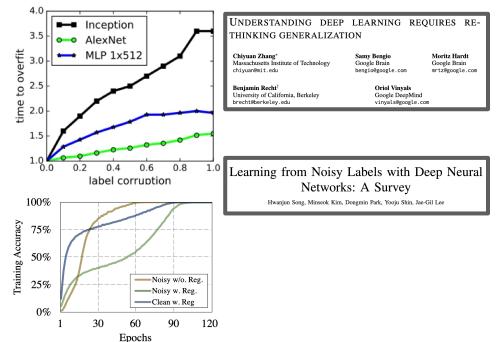
 Trained long enough, NNs fit label noise



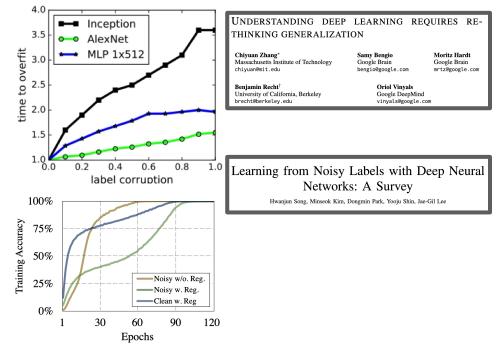
- Trained long enough, NNs fit label noise
- Does not always hurt Test Accuracy - Benign Overfitting



- Trained long enough, NNs fit label noise
- Does not always hurt Test Accuracy - Benign Overfitting
- Define a model with 100% training acc: **Interpolator**



- Trained long enough, NNs fit label noise
- Does not always hurt Test Accuracy - Benign Overfitting
- Define a model with 100% training acc: **Interpolator**



Question: What about Robust Accuracy ?

HOW BENIGN IS BENIGN OVERFITTING?

Amartya Sanyal

Department of Computer Science, University of Oxford, Oxford, UK The Alan Turing Institute, London, UK amartya.sanyal@cs.ox.ac.uk Varun Kanade Department of Computer Science University of Oxford, Oxford, UK The Alan Turing Institute, London, UK varunk@cs.ox.ac.uk

Puneet K.Dokania

Department of Engineering Science University of Oxford, Oxford, UK Five AI Limited puneet@robots.ox.ac.uk

Philip H.S. Torr Department of Engineering Science University of Oxford, Oxford, UK phst@robots.ox.ac.uk

A LAW OF ADVERSARIAL RISK, INTERPOLATION, AND LABEL NOISE

Daniel Paleka * ETH Zurich daniel.paleka@inf.ethz.ch Amartya Sanyal * ETH AI Center, ETH Zurich amartya.sanyal@ai.ethz.ch

Let

- μ be any distribution on \mathbb{R}^d ,
- $\eta \in (0,1)$ be the uniform label noise rate,
- $\mathcal{C} \subset \mathbb{R}^d$ be any region, and
- $N\left(\mathcal{C},\epsilon,\|\cdot\|
 ight)$ is the covering number of $~\mathcal{C}$

HOW BENIGN IS BENIGN OVERFITTING?

Amartya Sanyal Department of Computer Science, University of Oxford, Oxford, UK The Alan Turing Institute, London, UK amartya, sanyal@cs.ox.ac.uk Varun Kanade Department of Computer Science University of Oxford, Oxford, UK The Alan Turing Institute, London, UK varunk@cs.ox.ac.uk

Puneet K.Dokania Department of Engineering Science University of Oxford, Oxford, UK Five Al Limited puneet@robots.ox.ac.uk Philip H.S. Torr Department of Engineering Science University of Oxford, Oxford, UK phst@robots.ox.ac.uk

A LAW OF ADVERSARIAL RISK, INTERPOLATION, AND LABEL NOISE

Daniel Paleka * ETH Zurich daniel.paleka@inf.ethz.ch Amartya Sanyal * ETH AI Center, ETH Zurich amartya.sanyal@ai.ethz.ch

Let

- μ be any distribution on \mathbb{R}^d ,
- $\eta \in (0,1)$ be the uniform label noise rate,
- $\mathcal{C} \subset \mathbb{R}^d$ be any region, and
- $N\left(\mathcal{C},\epsilon,\|\cdot\|
 ight)$ is the covering number of $~\mathcal{C}$

HOW BENIGN IS BENIGN OVERFITTING?

Amartya Sanyal Department of Computer Science, University of Oxford, Oxford, UK The Alan Turing Institute, London, UK amartya.sanyal@cs.ox.ac.uk Varun Kanade Department of Computer Science University of Oxford, Oxford, UK The Alan Turing Institute, London, UK varunk@cs.ox.ac.uk

Puneet K.Dokania Department of Engineering Science University of Oxford, Oxford, UK Five Al Limited puneet@robots.ox.ac.uk Philip H.S. Torr Department of Engineering Science University of Oxford, Oxford, UK phst@robots.ox.ac.uk

A LAW OF ADVERSARIAL RISK, INTERPOLATION, AND LABEL NOISE

Daniel Paleka * ETH Zurich daniel.paleka@inf.ethz.ch Amartya Sanyal * ETH AI Center, ETH Zurich amartya.sanyal@ai.ethz.ch

Theorem If the noisy dataset size $m = \Omega\left(\frac{N(\mathcal{C}, \epsilon, \|\cdot\|)}{\mu(\mathcal{C})\eta}\right)$, for all interpolators h

Let

- μ be any distribution on \mathbb{R}^d ,
- $\eta \in (0,1)$ be the uniform label noise rate,
- $\mathcal{C} \subset \mathbb{R}^d$ be any region, and
- $N\left(\mathcal{C},\epsilon,\|\cdot\|
 ight)$ is the covering number of $~\mathcal{C}$

HOW BENIGN IS BENIGN OVERFITTING?

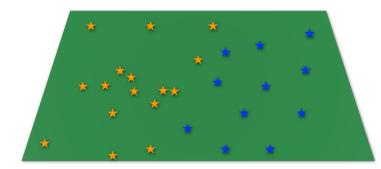
Amartya Sanyal Department of Computer Science, University of Oxford, Oxford, UK The Alan Turing Institute, London, UK amartya.sanyal@cs.ox.ac.uk Varun Kanade Department of Computer Science University of Oxford, Oxford, UK The Alan Turing Institute, London, UK varunk@cs.ox.ac.uk

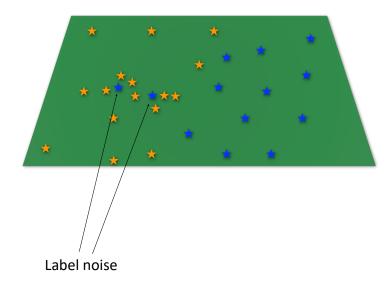
Puneet K.Dokania Department of Engineering Science University of Oxford, Oxford, UK Five Al Limited puneet@robots.ox.ac.uk Philip H.S. Torr Department of Engineering Science University of Oxford, Oxford, UK phst@robots.ox.ac.uk

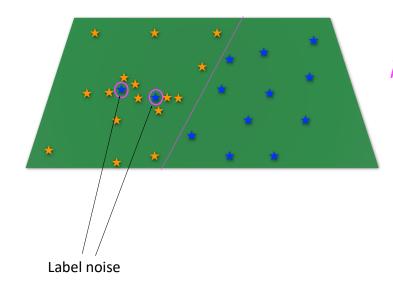
A LAW OF ADVERSARIAL RISK, INTERPOLATION, AND LABEL NOISE

Daniel Paleka * ETH Zurich daniel.paleka@inf.ethz.ch Amartya Sanyal * ETH AI Center, ETH Zurich amartya.sanyal@ai.ethz.ch

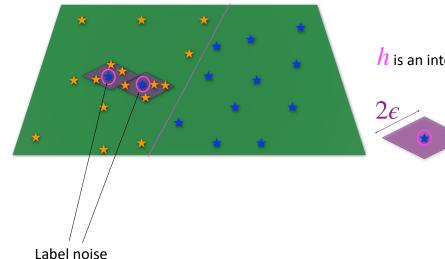
Theorem If the noisy dataset size $m = \Omega\left(\frac{N(\mathcal{C}, \epsilon, \|\cdot\|)}{\mu(\mathcal{C})\eta}\right)$, for all interpolators h $\operatorname{Adv.} \operatorname{Error}_{\epsilon}(h) \ge \mu(\mathcal{C})$





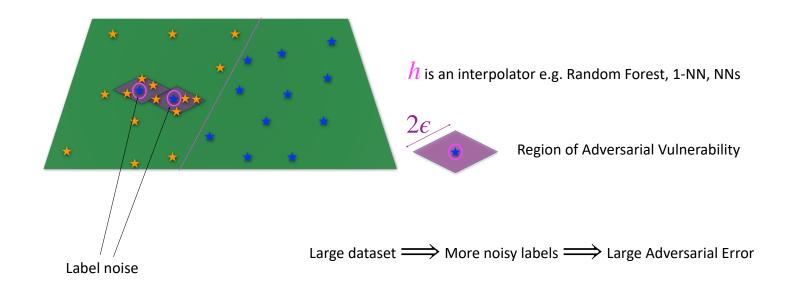


h is an interpolator e.g. Random Forest, 1-NN, NNs



h is an interpolator e.g. Random Forest, 1-NN, NNs

Region of Adversarial Vulnerability



Towards Deep Learning Models Resistant to Adversarial Attacks

Aleksander Madry* Aleksandar Makelov* Ludwig Schmidt* MIT MIT MIT madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Dimitris Tsipras* Adrian Vladu* MIT MIT tsipras@mit.edu avladu@mit.edu

Adversarial training

Adversarial training

Towards Deep Learning Models Resistant to Adversarial Attacks Aleksandar Makelov* Ludwig Schmidt* Aleksander Madry* MIT MIT MIT madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Dimitris Tsipras* Adrian Vladu* MIT MIT tsipras@mit.edu avladu@mit.edu

Adversarial Training replaces (or augments) clean data with corresponding adversarial examples during SGD.

Adversarial training

Towards Deep Learning Models Resistant to Adversarial Attacks Aleksander Madry* Aleksandar Makelov* Ludwig Schmidt* MIT MIT MIT madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Dimitris Tsipras* Adrian Vladu*

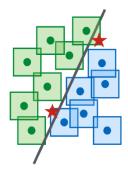
tsipras@mit.edu avladu@mit.edu

Adversarial Training replaces (or augments) clean data with corresponding adversarial examples during SGD.

Towards Deep Learning Models Resistant to Adversarial Attacks Aleksander Madry* Aleksandar Makelov* Ludwig Schmidt* MIT MIT MIT madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Dimitris Tsipras* Adrian Vladu*

tsipras@mit.edu avladu@mit.edu

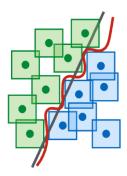
Adversarial Training replaces (or augments) clean data with corresponding adversarial examples during SGD.



Towards Deep Learning Models Resistant to Adversarial Attacks Aleksander Madry* Aleksandar Makelov* Ludwig Schmidt* MIT MIT MIT madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Dimitris Tsipras* Adrian Vladu*

tsipras@mit.edu avladu@mit.edu

Adversarial Training replaces (or augments) clean data with corresponding adversarial examples during SGD.

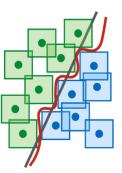


Towards Deep Learning Models Resistant to Adversarial Attacks Aleksander Madry* Aleksandar Makelov* Ludwig Schmidt* MIT MIT MIT madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Dimitris Tsipras* Adrian Vladu*

tsipras@mit.edu

Adversarial Training replaces (or augments) clean data with corresponding adversarial examples during SGD.

Naturally, complex models can fit the augmented data better.



avladu@mit.edu

Adversarial Training replaces (or augments) clean data with corresponding adversarial examples during SGD.

Naturally, complex models can fit the augmented data better.

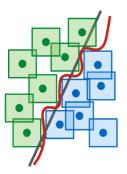
Robust overfitting is when train robust error decreases but test robust error increases.

Overfitting in adversarially robust deep learning

Leslie Rice^{*1} Eric Wong^{*2} J. Zico Kolter¹

Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry* Aleksandar Makelov* Ludwig Schmidt*
MIT MIT MIT

madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Dinitris Tsipras* Adrian Vladu* MIT MIT tsipras@mit.edu avladu@mit.edu



Adversarial Training replaces (or augments) clean data with corresponding adversarial examples during SGD.

Naturally, complex models can fit the augmented data better.

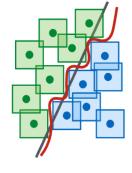
Robust overfitting is when train robust error decreases but test robust error increases.

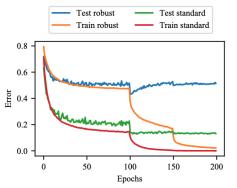
Overfitting in adversarially robust deep learning

Leslie Rice^{*1} Eric Wong^{*2} J. Zico Kolter¹

Towards Deep Learning Models Resistant to Adversarial Attacks Aleksander Madry* Aleksandar Makelov* Ludwig Schmidt*

MIT MIT MIT madry@mit.edu amakelov@mit.edu ludwigs@mit.edu Dimitris Tsipras* Adrian Vladu* MIT MIT tsipras@mit.edu avladu@mit.edu





Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting

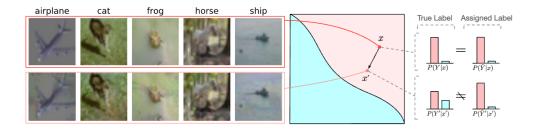
Chengyu Dong University of California, San Diego cdong@eng.ucsd.edu Liyuan Liu Microsoft Research lucliu@microsoft.com

Jingbo Shang University of California, San Diego jshang@eng.ucsd.edu

• One of explanations given for Robust overfitting is that adversarial training implicitly adds label noise.

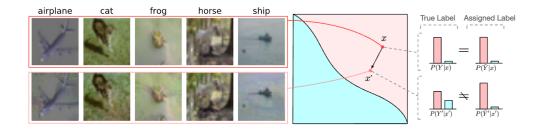
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting			
Chengyu Dong University of California, San Diego cdong@eng.ucsd.edu	Liyuan Liu Microsoft Research lucliu@microsoft.com		
Jingbo Shang University of California, San Diego jshang@eng.ucsd.edu			

• One of explanations given for Robust overfitting is that adversarial training implicitly adds label noise.

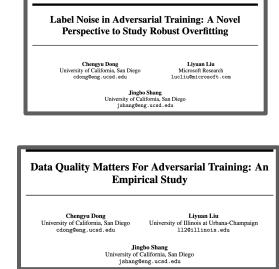


Label Noise in Adversari Perspective to Study F	0		
Chengyu Dong University of California, San Diego cdong@eng.ucsd.edu	Liyuan Liu Microsoft Research lucliu@microsoft.com		
Jingbo Shang University of California, San Diego jshang@eng.ucsd.edu			

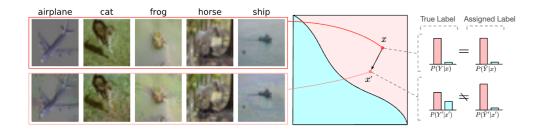
• One of explanations given for Robust overfitting is that adversarial training implicitly adds label noise.



 Simply using "good" examples that are far from the decision boundary alleviates parts of the issue



• One of explanations given for Robust overfitting is that adversarial training implicitly adds label noise.



- Simply using "good" examples that are far from the decision boundary alleviates parts of the issue
- Larger perturbation radius causes more overfitting

Adversarially Robust	Generalization	Requires More Data
Ludwig Schmidt MIT	Shibani Santurkar MIT	Dimitris Tsipras MIT
Kunal Tal Google Br		ler Mądry IIT

Interpolation can hurt robust generalization even when there is no noise

Konstantin Donhauser*1, Alexandru Tifrea*1, Michael Aerni
1 $$\rm Reinhard\ Heckel^{2,3}$ and Fanny Yang^1$

Exists simple distribution in $d \dim$ where robust generalisation requires \sqrt{d} times more data.

Adversarially Robu	st Generalization	a Requires More Data
Ludwig Schmidt MIT	Shibani Santurkar MIT	Dimitris Tsipras MIT
		der Mądry /IT

Interpolation can hurt robust generalization even when there is no noise

Konstantin Donhauser*1, Alexandru Ţifrea*1, Michael Aerni
1 Reinhard Heckel^{2,3} and Fanny ${\rm Yang^1}$

Exists simple distribution in $d \dim$ where robust generalisation requires \sqrt{d} times more data.

• Clearly, more data helps to avoid robust overfitting

Adversarially F	Robust Gene	eralization	Requires More Data
Ludwig Schm MIT	idt Shiba	ni Santurkar MIT	Dimitris Tsipras MIT
	unal Talwar loogle Brain	Aleksande Ml	

Interpolation can hurt robust generalization even when there is no noise

Konstantin Donhauser*1, Alexandru Ţifrea*1, Michael Aerni
1 $$\rm Reinhard\ Heckel^{2,3}$ and $\rm Fanny\ Yang^1$$

Exists simple distribution in $d \dim$ where robust generalisation requires \sqrt{d} times more data.

- Clearly, more data helps to avoid robust overfitting
- Regularisation and early-stopping also helps.

Adversarially Robus	st Generalization	n Requires More Data
Ludwig Schmidt MIT	Shibani Santurkar MIT	Dimitris Tsipras MIT
Kunal T Google		der Mądry ⁄IIT

Interpolation can hurt robust generalization even when there is no noise

Konstantin Donhauser*1, Alexandru Ţifrea*1, Michael Aerni
1 $$\rm Reinhard\ Heckel^{2,3}$ and Fanny Yang^1$

Exists simple distribution in $d \dim$ where robust generalisation requires \sqrt{d} times more data.

- Clearly, more data helps to avoid robust overfitting
- Regularisation and early-stopping also helps.

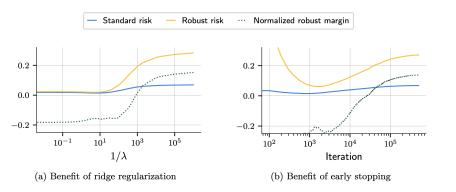
Adversarially Robus	st Generalization	n Requires More Data
Ludwig Schmidt MIT	Shibani Santurkar MIT	Dimitris Tsipras MIT
Kunal T Google		der Mądry ⁄IIT

Interpolation can hurt robust generalization even when there is no noise

Konstantin Donhauser*1, Alexandru Ţifrea*1, Michael Aerni
1 $$\rm Reinhard\ Heckel^{2,3}$ and Fanny Yang^1$

Exists simple distribution in $d \dim$ where robust generalisation requires \sqrt{d} times more data.

- Clearly, more data helps to avoid robust overfitting
- Regularisation and early-stopping also helps.



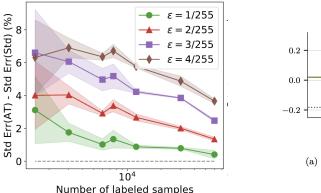
Adversarially Robus	st Generalization	Requires More Data
Ludwig Schmidt MIT	Shibani Santurkar MIT	Dimitris Tsipras MIT
Kunal T Google 1		ler Mądry IIT

Interpolation can hurt robust generalization even when there is no noise

Konstantin Donhauser*1, Alexandru Ţifrea*1, Michael Aerni
1 Reinhard Heckel^{2,3} and Fanny $\rm Yang^1$

Exists simple distribution in $d \dim$ where robust generalisation requires \sqrt{d} times more data.

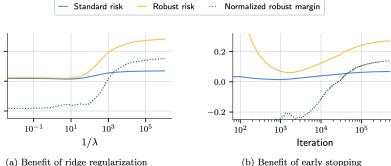
- Clearly, more data helps to avoid robust overfitting
- Regularisation and early-stopping also helps.



Adversarially F	Robust Gene	ralization	Requires More Data	a
Ludwig Schm MIT	nidt Shibar	ni Santurkar MIT	Dimitris Tsipras MIT	
	Tunal Talwar Google Brain	Aleksande Ml	6 6	

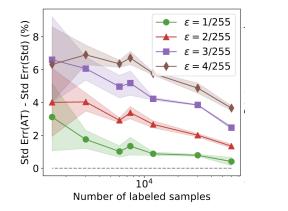
Interpolation can hurt robust generalization even when there is no noise

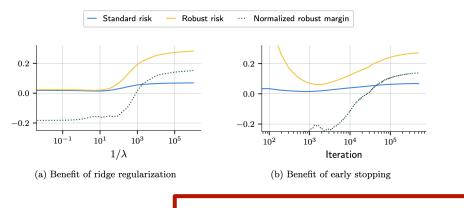
Konstantin Donhauser*¹, Alexandru Ţifrea*¹, Michael Aerni¹ Reinhard Heckel^{2,3} and Fanny Yang¹



Exists simple distribution in $d \dim$ where robust generalisation requires \sqrt{d} times more data.

- Clearly, more data helps to avoid robust overfitting
- Regularisation and early-stopping also helps.





Adversarially	Robust G	eneralization	Requires More	Data
Ludwig Sch MIT	midt Sł	nibani Santurkar MIT	Dimitris Tsipras MIT	
	Kunal Talwar Google Brain		er Mądry IT	

Interpolation can hurt robust generalization even when there is no noise

Konstantin Donhauser*1, Alexandru Ţifrea*1, Michael Aerni
1 Reinhard Heckel^{2,3} and Fanny $\rm Yang^1$

With unlabelled data

Adversarially Robust Generalization Just Requires More Unlabeled Data

Runtian Zhai¹, Tianle Cai¹, Di He^{1*}, Chen Dan², Kun He⁴, John E. Hopcroft³ & Liwei Wang¹ ¹Peking University ²Carnell University ³Cornell University ⁴Huazhong University of Science and Technology {zhairuntian, caitianle1998, di.he, wanglw}@pku.edu.cn cdan@cs.cmu.edu, brooklet60@hust.edu.cn, jeh17@cornell.edu

Unlabeled Dat	a Improves	Adversa	rial Robustness
Yair Carmon* Stanford University yairc@stanford.edu	Aditi Raghu Stanford Un aditir@stanf	iversity	Ludwig Schmidt UC Berkeley ludwig@berkeley.edu
Percy Stanford U pliang@cs.s	Jniversity	Stanfo	n C. Duchi rd University Sstanford.edu

Observation: Robust error can be decomposed into

Adversarially Robust Generalization Just Requires More Unlabeled Data

Runtian Zhai¹; Tianle Cai¹⁺, Di He¹⁺, Chen Dan², Kun He⁴, John E. Hopcroft³ & Liwei Wang¹ ¹Peking University ²Carnegie Mellon University ³Cornell University ⁴Huazhong University of Science and Technology {zhairuntian, caitianle1998, di.he, wanglw}@pku.edu.cn cdan@cs.cmu.edu, zhooklet60@hust.edu.cn, jeh17@cornell.edu

Unlabeled Dat	ta Improves	Adversa	rial Robustness
Yair Carmon* Stanford University yairc@stanford.edu	Aditi Raghu Stanford Un aditir@stan:	iversity	Ludwig Schmidt UC Berkeley ludwig@berkeley.edu
Percy Stanford U pliang@cs.s	University	Stanfo	n C. Duchi rd University Østanford.edu

Observation: Robust error can be decomposed into

1. Stability error: Whether prediction is stable in a ball around data from the test distribution

Adversarially Robust Generalization Just Requires More Unlabeled Data

Runtian Zhai¹, Tianle Cai¹, Di He¹, Chen Dan², Kun He⁴, John E. Hopcroft³ & Liwei Wang¹ Peking University ²Carmegic Mellon University ³Cornell University ⁴Huazhong University of Science and Technology {zhairuntian, caitianle1998,di.he, wanglw}@pku.edu.cn cdan@cs.cmu.edu, brooklet60@hust.edu.cn, jeh17@cornell.edu

Unlabeled Dat	a Improves	Adversa	rial Robustness
Yair Carmon* Stanford University yairc@stanford.edu	Aditi Raghu Stanford Un aditir@stanf	iversity	Ludwig Schmidt UC Berkeley ludwig@berkeley.edu
Percy Stanford U pliang@cs.s	Jniversity	Stanfo	n C. Duchi rd University Østanford.edu

Observation: Robust error can be decomposed into

- **1. Stability error:** Whether prediction is stable in a ball around data from the test distribution
- 2. Classification accuracy: Whether classification in the original data distribution is accurate

Adversarially Robust Generalization Just Requires More Unlabeled Data

Runtian Zhai¹; Tianle Cai¹, Di He^{1*}, Chen Dan², Kun He⁴, John E. Hopcroft³ & Liwei Wang¹ ¹Peking University ²Carmegie Mellon University ³Cornell University ⁴Huazhong University of Science and Technology {zhairuntian, caitianle1998, di.he, wanglw}@pku.edu.cn cdan@cs.cmu.edu, brooklet60@hust.edu.cn, jeh17@cornell.edu

Unlabeled Data Improves Adversarial Robustness					
Yair Carmon* Aditi Raghunathan* Ludwig Schmidt Stanford University Stanford University UC Berkeley yairc@stanford.edu aditir@stanford.edu ludwig@berkeley.e					
Percy Liang Stanford University pliang@cs.stanford.edu		Stanfo	n C. Duchi rd University Sstanford.edu		

Observation: Robust error can be decomposed into

- **1. Stability error:** Whether prediction is stable in a ball around data from the test distribution
- 2. Classification accuracy: Whether classification in the original data distribution is accurate

Classical use of unlabelled data improves 2. Classification accuracy.

Adversarially Robust Generalization Just Requires More Unlabeled Data

Runtian Zhai¹; Tianle Cai¹, Di He^{1*}, Chen Dan², Kun He⁴, John E. Hopcroft³ & Liwei Wang¹ ¹Peking University ²Carmegie Mellon University ³Cornell University ⁴Huazhong University of Science and Technology {zhairuntian, caitianle1998, di.he, wanglw}@pku.edu.cn cdan@cs.cmu.edu, brooklet60@hust.edu.cn, jeh17@cornell.edu

Unlabeled Data Improves Adversarial Robustness					
Yair Carmon* Stanford University yairc@stanford.edu	Stanford University Stanford University UC Berkele				
Percy Stanford U pliang@cs.s	Jniversity	Stanfo	n C. Duchi rd University Sstanford.edu		

Observation: Robust error can be decomposed into

- **1. Stability error:** Whether prediction is stable in a ball around data from the test distribution
- 2. Classification accuracy: Whether classification in the original data distribution is accurate

Adversarially Robust Generalization Just Requires More Unlabeled Data

Runtian Zhai¹; Tianle Cai¹, Di He^{1*}, Chen Dan², Kun He⁴, John E. Hopcroft³ & Liwei Wang¹ ¹Peking University ²Carmegie Mellon University ³Cornell University ⁴Huazhong University of Science and Technology {zhairuntian, caitianle1998, di.he, wangiw}@pku.edu.cn cdan@cs.cmu.edu, brooklet60@hust.edu.cn, jeh17@cornell.edu

Unlabeled Data Improves Adversarial Robustness					
Yair Carmon* Aditi Raghunathan* Ludwig Schmidt Stanford University Stanford University UC Berkeley yairc@stanford.edu aditir@stanford.edu ludwig@berkeley.e					
Percy Stanford U pliang@cs.s	University	Stanfo	n C. Duchi ord University Østanford.edu		

Classical use of unlabelled data improves 2. Classification accuracy.

To improve robustness, use unlabelled data to improve **1.** Stability error.

Observation: Robust error can be decomposed into

- **1. Stability error:** Whether prediction is stable in a ball around data from the test distribution
- 2. Classification accuracy: Whether classification in the original data distribution is accurate

Adversarially Robust Generalization Just Requires More Unlabeled Data

Runtian Zhai¹; Tianle Cai¹, Di He^{1*}, Chen Dan², Kun He⁴, John E. Hopcroft³ & Liwei Wang¹ ¹Peking University ²Carmegie Mellon University ³Cornell University ⁴Huazhong University of Science and Technology {zhairuntian, caitianle1998, di.he, wanglw}@pku.edu.cn cdan@cs.cmu.edu,brooklet60@hust.edu.cn, jeh17@cornell.edu

Unlabeled Data Improves Adversarial Robustness					
Yair Carmon* Aditi Raghunathan* Ludwig Schmidt Stanford University Stanford University UC Berkeley yairc@stanford.edu aditir@stanford.edu ludwig@berkeley.e					
Percy Stanford U pliang@cs.s	University	Stanfo	n C. Duchi ord University Østanford.edu		

Classical use of unlabelled data improves 2. Classification accuracy.

To improve robustness, use unlabelled data to improve **1.** Stability error.

Recipe: Use adversarial training on pseudo-labels on the unlabelled data

With unlabelled data

Method	Robust Test Acc.	Standar Test Ace	a
Standard Training	0.8%	95.2%	Vanilla
PG-AT (Madry et al., 2018)	45.8%	87.3%	Supervised
TRADES (Zhang et al.,	55.4%	84.0%	J
2019)			
Standard Self-Training	0.3%	96.4% `)
Robust Consistency Training	56.5%	83.2%	Semisupervised
(Carmon et al., 2019)			with same
RST + PG-AT (this paper)	58.5%	91.8%	unlabeled data
RST + TRADES (this	63.1%	89.7%	J
paper)		'	
(Carmon et al., 2019)			

Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

Aditi Raghunathan^{*1} Sang Michael Xie^{*1} Fanny Yang² John C. Duchi¹ Percy Liang¹

With unlabelled data

Method	Robust Test Acc.	Standar Test Ac		
Standard Training PG-AT (Madry et al., 2018) TRADES (Zhang et al., 2019)	0.8% 45.8% 55.4%	95.2% 87.3% 84.0%	Vanilla Supervised	Adversarially Requires Mort
Standard Self-Training Robust Consistency Training (Carmon et al., 2019)	0.3% 56.5%	96.4% 83.2%	Semisupervised with same	Runtian Zhai ¹ ; Tianle Cai ¹ Kun He ⁴ , John E. Hopcrof ¹ Peking University ² Carneg ⁴ Huazhong University of Sc {zhairuntian, caitian}
RST + PG-AT (this paper) RST + TRADES (this paper) (Carmon et al., 2019)	58.5% 63.1%	91.8% 89.7%	unlabeled data	cdan@cs.cmu.edu,brook

Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

Aditi Raghunathan^{*1} Sang Michael Xie^{*1} Fanny Yang² John C. Duchi¹ Percy Liang¹

DVERSARIALLY ROBUST GENERALIZATION JUST EQUIRES MORE UNLABELED DATA

Intian Zhai¹; Tianle Cai¹*, Di He¹*, Chen Dan², un He⁴, John E. Hopcroft³ & Liwei Wang¹ keing University ²Carnegie Mellon University ³Cornell University luazhong University of Science and Technology hairuntian, caitianle1998, dile, wang1w|gku.edu.cn langes.cmu.edu, brooklet60@hust.edu.cn, jeh17@cornell.edu

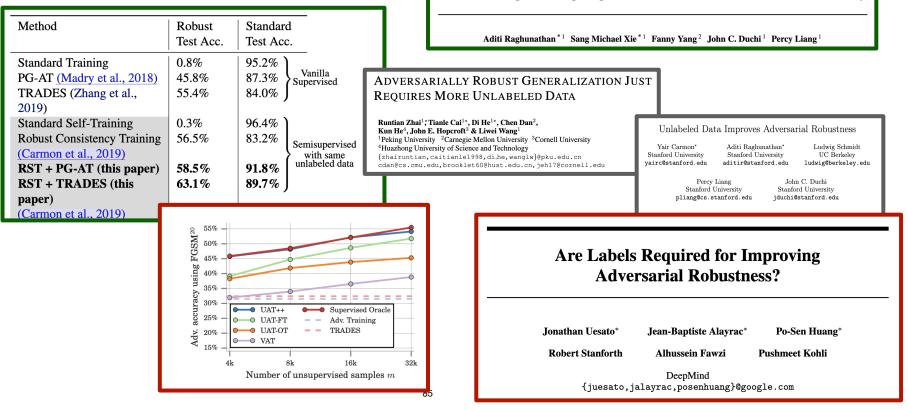
With unlabelled data

Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

Method	Robust Test Acc.	Standard Test Acc.	Aditi Raghunathan ^{*1} Sang Michael X	ie ^{*1} Fanny Yang ² John C. Duchi ¹ Percy Liang ¹
Standard Training PG-AT (<u>Madry et al., 2018</u>) TRADES (Zhang et al., 2019)	0.8% 45.8% 55.4%	95.2% 87.3% 84.0% Supervised	Adversarially Robust Generalization J Requires More Unlabeled Data	UST
Standard Self-Training Robust Consistency Training (Carmon et al., 2019) RST + PG-AT (this paper) RST + TRADES (this paper) (Carmon et al., 2019)	0.3% 56.5% 58.5% 63.1%	96.4% 83.2% 91.8% 89.7%	{zhairuntian, caitianle1998, di_he, wanglw}@pku.edu.cn	Unlabeled Data Improves Adversarial Robustness Yair Carmon* Stanford University yair C@stanford.edu Percy Liang Stanford University pliang@cs.stanford.edu John C. Duchi Stanford University jduchi@stanford.edu

With unlabelled data

Understanding and Mitigating the Tradeoff Between Robustness and Accuracy



Distributional Robustness in Machine Learning

• Adversarial Robustness measures performance against the worst shift between train and test set.

- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real world between train and test data e.g. due to

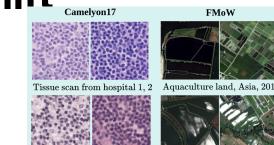
- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real world between train and test data e.g. due to
 - Hard to collect quality data uniformly.

- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real world between train and test data e.g. due to
 - Hard to collect quality data uniformly.
 - Data sources evolve over time

- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real world between train and test data e.g. due to
 - Hard to collect quality data uniformly.
 - Data sources evolve over time

- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real world between train and test data e.g. due to
 - Hard to collect quality data uniformly.
 - Data sources evolve over time

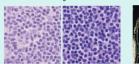
- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real world between train and test data e.g. due to
 - Hard to collect quality data uniformly.
 - Data sources evolve over time



scan from hospital 3, 4 Aquact

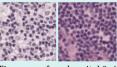
Aquaculture land, Asia, 2013

- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real world between train and test data e.g. due to
 - Hard to collect quality data uniformly.
 - Data sources evolve over time



Fissue scan from hospital 1, 2

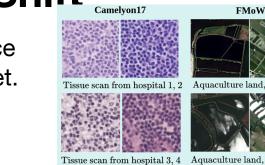
Aquaculture land, Asia, 2012



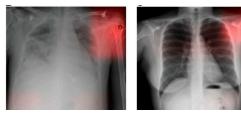
Fissue scan from hospital 3, 4

Aquaculture land, Asia, 2013

- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real • world between train and test data e.g. due to
 - Hard to collect quality data uniformly. Ο
 - Data sources evolve over time Ο

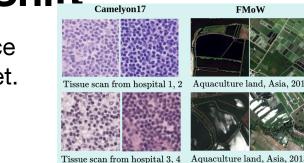


Aquaculture land, Asia, 201



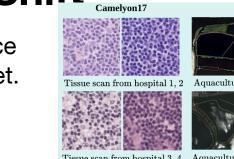
Robustness to distribution shift requires preserving accuracy when the \bullet distribution shifts

- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real • world between train and test data e.g. due to
 - Hard to collect quality data uniformly. Ο
 - Data sources evolve over time Ο



- Robustness to distribution shift requires preserving accuracy when the \bullet distribution shifts
- Impossible to protect against arbitrary shifts

- Adversarial Robustness measures performance against the worst shift between train and test set.
- More natural distribution shifts exist in the real • world between train and test data e.g. due to
 - Hard to collect quality data uniformly. Ο
 - Data sources evolve over time Ο



FMoW

can from hospital 3, 4

Aquaculture land, Asia, 201

- Robustness to distribution shift requires *preserving accuracy when the* \bullet distribution shifts
- Impossible to protect against arbitrary shifts
- Goal is to allow for a graceful degradation with increasing shift

Rich body of existing literature

Rich body of existing literature

We will not even attempt to be exhaustive

Rich body of existing literature

We will not even attempt to be exhaustive

Rich body of existing literature

We will not even attempt to be exhaustive

Robustness to distribution shift features a rich body of existing literature asking

• What causes failure to generalise to distribution shift?

Rich body of existing literature

We will not even attempt to be exhaustive

- What causes failure to generalise to distribution shift?
 - Spurious correlations

Rich body of existing literature

We will not even attempt to be exhaustive

- What causes failure to generalise to distribution shift?
 - Spurious correlations
 - Label Noise

Rich body of existing literature

We will not even attempt to be exhaustive

- What causes failure to generalise to distribution shift ?
 - Spurious correlations
 - Label Noise
 - Over-parameterised models

Rich body of existing literature

We will not even attempt to be exhaustive

- What causes failure to generalise to distribution shift?
 - Spurious correlations
 - Label Noise
 - Over-parameterised models
- How can models be made more robust to distribution shift?

Rich body of existing literature

We will not even attempt to be exhaustive

- What causes failure to generalise to distribution shift?
 - Spurious correlations
 - Label Noise
 - Over-parameterised models
- How can models be made more robust to distribution shift?
 - Distributionally Robust Optimisation

Rich body of existing literature

We will not even attempt to be exhaustive

- What causes failure to generalise to distribution shift?
 - Spurious correlations
 - Label Noise
 - Over-parameterised models
- How can models be made more robust to distribution shift?
 - Distributionally Robust Optimisation
 - Learn Causal/Robust representations

Rich body of existing literature

We will not even attempt to be exhaustive

Robustness to distribution shift features a rich body of existing literature asking

- What causes failure to generalise to distribution shift ?
 - Spurious correlations
 - Label Noise
 - Over-parameterised models

• How can models be made more robust to distribution shift?

- Distributionally Robust Optimisation
- Learn Causal/Robust representations
- Collect more data (possibly unlabelled)

Rich body of existing literature

We will not even attempt to be exhaustive

- What causes failure to generalise to distribution shift?
 - Spurious correlations
 - Label Noise
 - Over-parameterised models
- How can models be made more robust to distribution shift?
 - Distributionally Robust Optimisation
 - Learn Causal/Robust representations
 - Collect more data (possibly unlabelled)

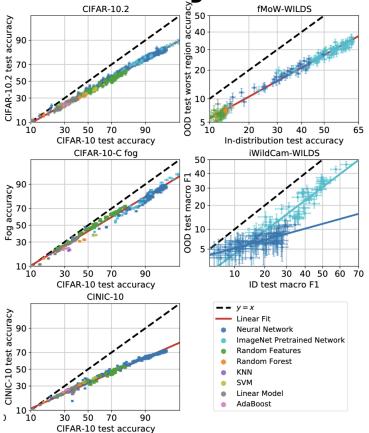
Rich body of existing literature

We will not even attempt to be exhaustive

- What causes failure to generalise to distribution shift ?
 - Spurious correlations
 - Label Noise
 - Over-parameterised models
- How can models be made more robust to distribution shift?
 - Distributionally Robust Optimisation
 - Learn Causal/Robust representations
 - Collect more data (possibly unlabelled)

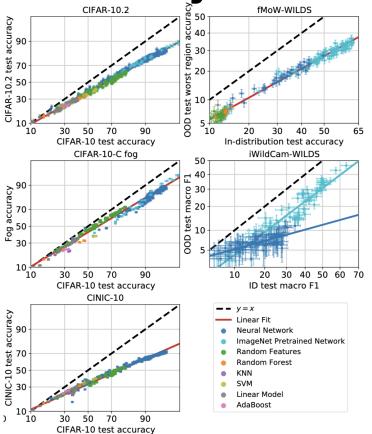
Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization

John M	Ailler* Rol	han Taori [†]	Aditi Ra	$aghunathan^{\dagger}$
Shiori Sagawa †	Pang Wei Koh	† Vaishaa	al Shankar*	${\rm Percy}~{\rm Liang}^{\dagger}$
	Yair Carmon \ddagger	Ludwig	g Schmidt [§]	



Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization

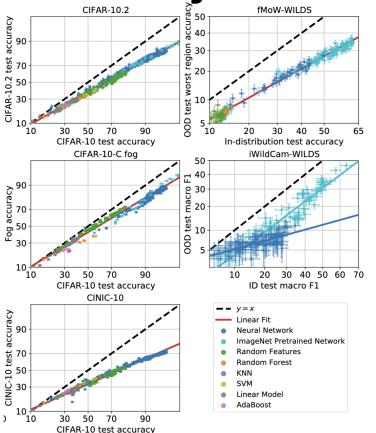
John M	Miller* R	ohan Taori†	Aditi Rə	${ m ghunathan}^{\dagger}$
Shiori Sagawa †	Pang Wei Ko	oh [†] Vaishaa	al Shankar*	${\rm Percy}~{\rm Liang}^{\dagger}$
	Yair Carmon \ddagger	Ludwig	g Schmidt [§]	



Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization

John 1	Miller* Roha	an Taori† Aditi R	$\operatorname{aghunathan}^{\dagger}$
Shiori Sagawa †	Pang Wei ${\rm Koh}^{\dagger}$	Vaishaal Shankar*	$\operatorname{Percy}\operatorname{Liang}^\dagger$
	Yair Carmon \ddagger	Ludwig Schmidt [§]	

 Accuracy-on-the-line phenomenon: ID and OOD accuracy are positively correlated.



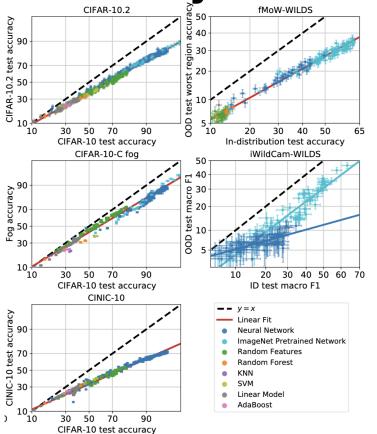
Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization John Miller* Rohan Taori[†] Aditi Raghunathan[†] Shiori Sagawa[†] Pang Wei Koh[†] Vaishaal Shankar* Percy Liang[†]

Ludwig Schmidt[§]

• Accuracy-on-the-line phenomenon: ID and OOD accuracy are positively correlated.

Yair Carmon[‡]

 Indicates that improving ID accuracy also improves OOD accuracy.



Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization John Miller* Rohan Taori[†] Aditi Raghunathan[†] Shiori Sagawa[†] Pang Wei Koh[†] Vaishaal Shankar* Percy Liang[†]

Ludwig Schmidt[§]

• Accuracy-on-the-line phenomenon: ID and OOD accuracy are positively correlated.

Yair Carmon[‡]

- Indicates that improving ID accuracy also improves OOD accuracy.
- Holds for a wide variety of models and datasets

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.

• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

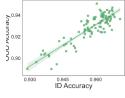
¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.

• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.



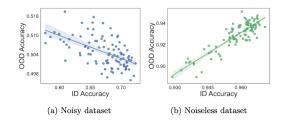
(b) Noiseless dataset

• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.

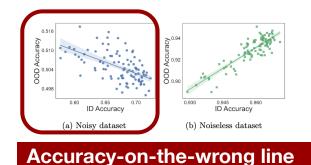


• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.

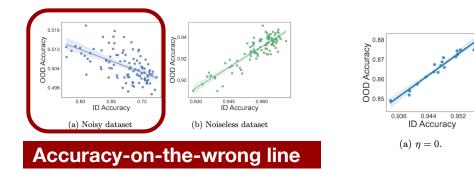


• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.



Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels?

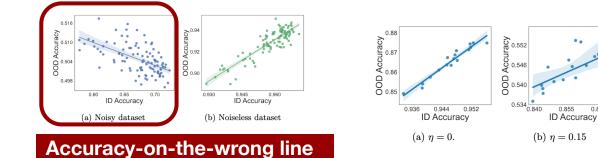
Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkelev, U.S.A. ³Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.

DOD Accuracy

0.870

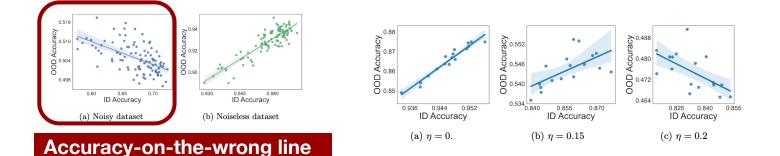


• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.

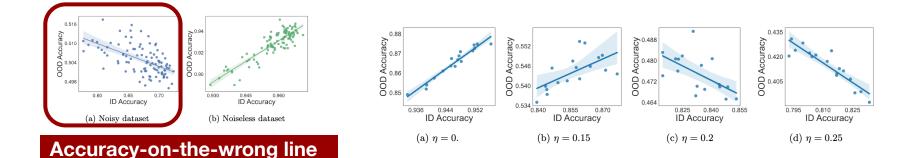


• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.

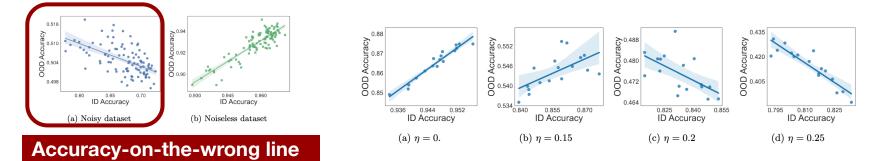


• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Halcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.



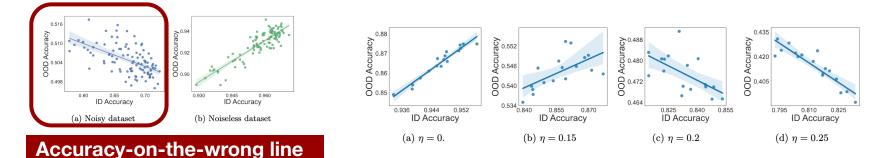
Two sufficient factors for Accuracy-on-the-wrong-line

• Question: Is **Accuracy-on-the-line** robust to noisy or low quality labels ?

Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation

Amartya Sanyal¹, Yaxi Hu¹, Yaodong Yu², Yian Ma³, Yixin Wang⁴, and Bernhard Schölkopf¹

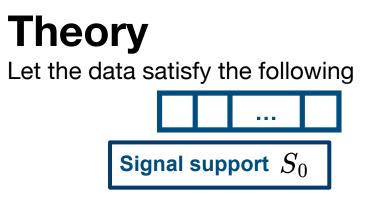
¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of California, Berkeley, U.S.A. ³Hahcıoğlu Data Science Institute, University of California San Diego, San Diego, U.S.A. ⁴University of Michigan, Ann Arbor, U.S.A.



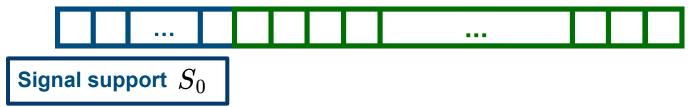
Two sufficient factors for Accuracy-on-the-wrong-line

- Inject and fit random label noise in the training data
- Presence of multiple "nuisance features" i.e. irrelevant features

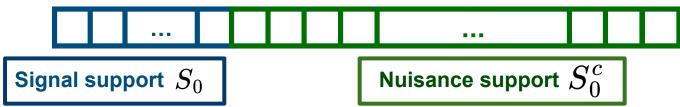
Theory Let the data satisfy the following



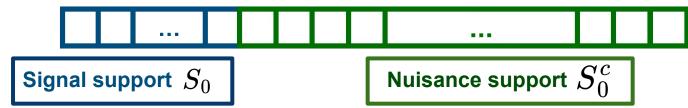
Let the data satisfy the following



Let the data satisfy the following

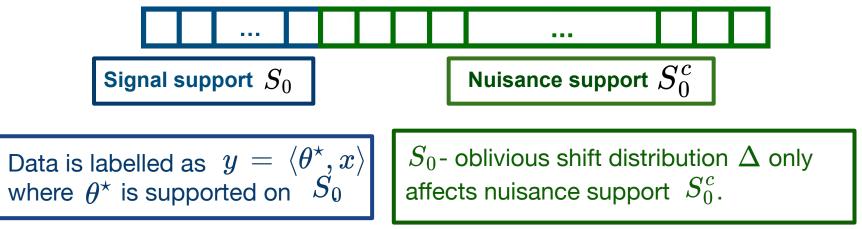


Let the data satisfy the following

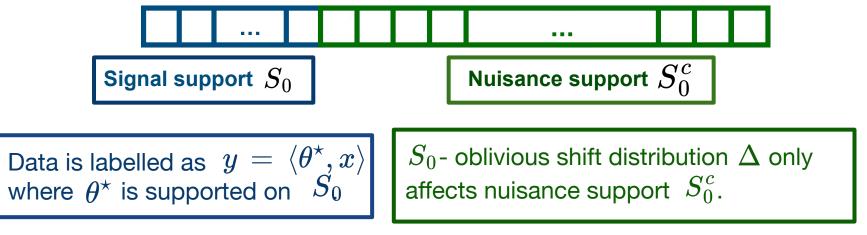


Data is labelled as $\ y = \langle heta^\star, x
angle$ where $\ heta^\star$ is supported on $\ S_0$

Let the data satisfy the following

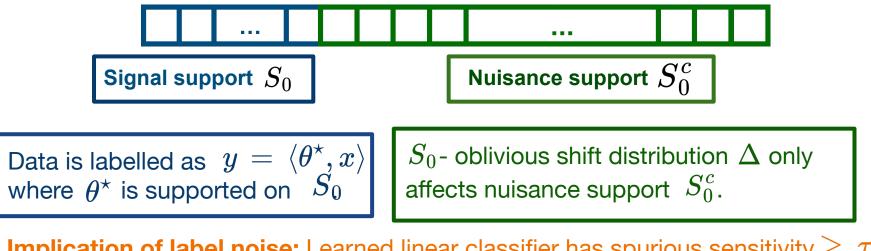


Let the data satisfy the following



Implication of label noise: Learned linear classifier has spurious sensitivity $\geq au$

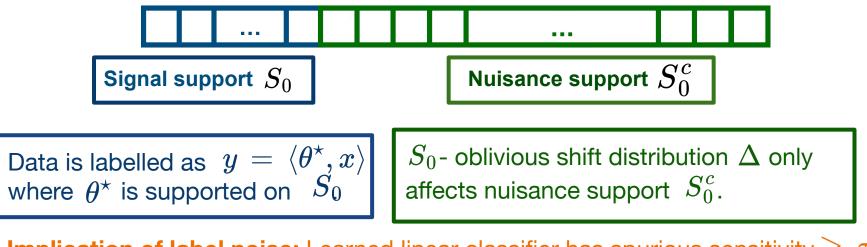
Let the data satisfy the following



Implication of label noise: Learned linear classifier has spurious sensitivity $\geq \tau$

Informal Theorem For all |x| s.t. $\langle heta^{\star},x
angle > 0$, we have

Let the data satisfy the following



Implication of label noise: Learned linear classifier has spurious sensitivity $\geq au$

Informal Theorem For all
$$x \stackrel{\text{s.t.}}{\langle \theta^{\star}, x \rangle > 0}$$
, we have $\Pr_{\delta \sim \Delta} \left[\langle \hat{\theta}, x + \delta < 0 \rangle \right] \geq 1 - \exp\left(- \left| \mathcal{S}_{\theta}^{\mathcal{C}} \right| \tau^2 \right)$

How Robust is Unsupervised Representation Learning to Distribution Shift?

Yuge Shi* Department of Engineering Science University of Oxford

Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Philip H.S. Torr Department of Engineering Science University of Oxford Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

- **Pre-trained representations** are a common strategy against this problem.
- But representations from supervised training often suffer from problems like **simplicity bias**.

HOW ROBUST IS UNSUPERVISED REPRESENTATION LEARNING TO DISTRIBUTION SHIFT?

Yuge Shi* Department of Engineering Science University of Oxford

Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Philip H.S. Torr Department of Engineering Science University of Oxford Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

- Pre-trained representations are a common strategy against this problem.
- But representations from supervised training • often suffer from problems like **simplicity bias**.

Solution - Use Unlabelled data & unsupervised representation learning

HOW ROBUST IS UNSUPERVISED REPRESENTATION **LEARNING TO DISTRIBUTION SHIFT?**

Yuge Shi* Department of Engineering Science University of Oxford

Philip H.S. Torr

University of Oxford

Amartya Sanyal Department of Engineering Science

ETH Zurich

Department of Computer Science & ETH AI Center ETH Zurich

Imant Daunhawer & Julia E. Vogt

Department of Computer Science

- **Pre-trained representations** are a common strategy against this problem.
- But representations from supervised training often suffer from problems like **simplicity bias**.

Solution - Use Unlabelled data & unsupervised representation learning

Experimental setup

How Robust is Unsupervised Representation Learning to Distribution Shift?

Yuge Shi* Department of Engineering Science University of Oxford

Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Philip H.S. Torr Department of Engineering Science University of Oxford Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

- **Pre-trained representations** are a common strategy against this problem.
- But representations from supervised training often suffer from problems like **simplicity bias**.

How Robust is Unsupervised Representation Learning to Distribution Shift?

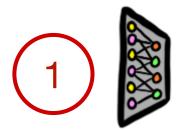
Yuge Shi* Department of Engineering Science University of Oxford

Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Philip H.S. Torr Department of Engineering Science University of Oxford Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

Solution - Use Unlabelled data & unsupervised representation learning

Experimental setup



Pre-train representation learning on <u>ID data</u> with labelled (SL) or unlabelled data (AE/SSL)

- **Pre-trained representations** are a common strategy against this problem.
- But representations from supervised training often suffer from problems like **simplicity bias**.

How Robust is Unsupervised Representation Learning to Distribution Shift?

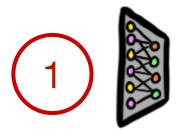
Yuge Shi* Department of Engineering Science University of Oxford

Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Philip H.S. Torr Department of Engineering Science University of Oxford Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

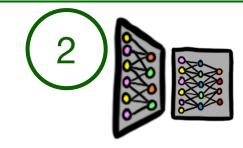
Solution - Use Unlabelled data & unsupervised representation learning

Experimental setup

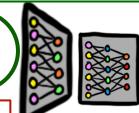


Pre-train representation learning on <u>ID data</u> with labelled (SL) or unlabelled data (AE/SSL)

Train a small ML model on top of the features using **Dist X (ID or OOD)**



Train a small ML model on top of the features using **Dist X**



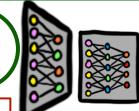
Pre-train representation learning on ID data with labelled (SL) or unlabelled data (AE/SSL) How Robust is Unsupervised Representation Learning to Distribution Shift?

Yuge Shi* Department of Engineering Science University of Oxford

Philip H.S. Torr Department of Engineering Science University of Oxford Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

Train a small ML model on top of the features using **Dist X**



Pre-train representation learning on <u>ID data</u> with labelled (SL) or unlabelled data (AE/SSL)

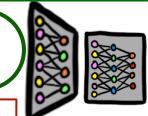
Dist X \rightarrow OOD. Test on OOD.

How Robust is Unsupervised Representation Learning to Distribution Shift?

Yuge Shi* Department of Engineering Science University of Oxford Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Philip H.S. Torr Department of Engineering Science University of Oxford Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

Train a small ML model on top of the features using **Dist X**



HOW ROBUST IS UNSUPERVISED REPRESENTATION **LEARNING TO DISTRIBUTION SHIFT?**

Yuge Shi* Department of Engineering Science University of Oxford

Philip H.S. Torr Department of Engineering Science University of Oxford

Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

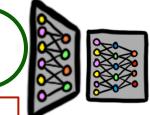
Pre-train representation learning on ID data with labelled (SL) or unlabelled data (AE/SSL)

Dist X \rightarrow OOD. Test on OOD.

86.1 26.92 35.6 82.7 83.11 79.9 25.73 89.8 80.91 29.64 52.5 86.91 86.84 18.26 51.5 73.37 44 22.79 (a) MNIST-CIFAR (b) CdSprites (c) Camelyon17-CS (d) FMoW-CS (e) Camelyon17 (f) FMoW

OOD Accuracy (higher is better)

Train a small ML model on top of the features using **Dist X**



How Robust is Unsupervised Representation Learning to Distribution Shift?

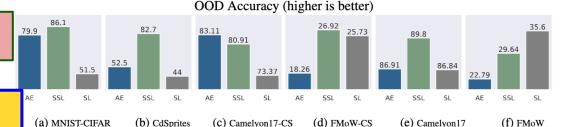
Yuge Shi* Department of Engineering Science University of Oxford

Philip H.S. Torr Department of Engineering Science University of Oxford Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

Pre-train representation learning on <u>ID data</u> with labelled (SL) or unlabelled data (AE/SSL)

Dist X \rightarrow OOD. Test on OOD.

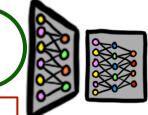


Shift Sensitivity = Diff between

- 1. Dist $X \rightarrow OOD$. Test on OOD.
- 2. Dist $X \rightarrow ID$. Test on ID.

Captures robustness of

Train a small ML model on top of the features using **Dist X**



How Robust is Unsupervised Representation Learning to Distribution Shift?

Yuge Shi* Department of Engineering Science University of Oxford

University of Oxford

Philip H.S. Torr Department of Engineering Science Imant Daunhawer & Julia E. Vogt Department of Computer Science ETH Zurich

Amartya Sanyal Department of Computer Science & ETH AI Center ETH Zurich

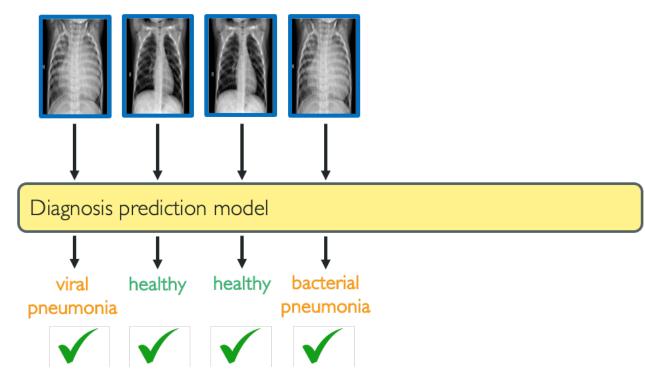
Pre-train representation learning on <u>ID data</u> with labelled (SL) or unlabelled data (AE/SSL)

OOD Accuracy (higher is better) 86.1 35.6 82.7 Dist X \rightarrow OOD. Test on OOD. 79.9 83.11 25.73 89.8 80.91 29.64 52.5 86.91 86.84 18.26 51.5 73.37 44 AE SSL **Shift Sensitivity** = Diff between Shift Sensitivity (lower is better) 37.7 10.72 12.26 Dist X \rightarrow OOD. Test on OOD. 9.29 6.35 8.77 Dist X \rightarrow ID. Test on ID. SL AE SSL AE SSL SL AE SSL SL AE SSL SL AE รรเ Captures robustness of (f) FMoW a) MNIST-CIFAR (b) CdSprites (c) Camelyon17-CS (d) FMoW-CS (e) Camelvon17

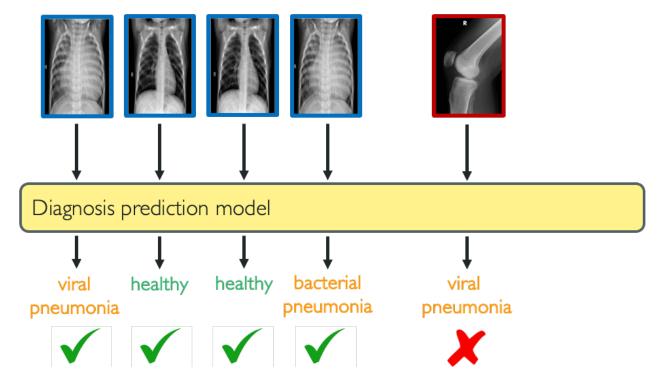
Out-of-distribution detection

What if we cannot predict reliably outside of the training distribution?

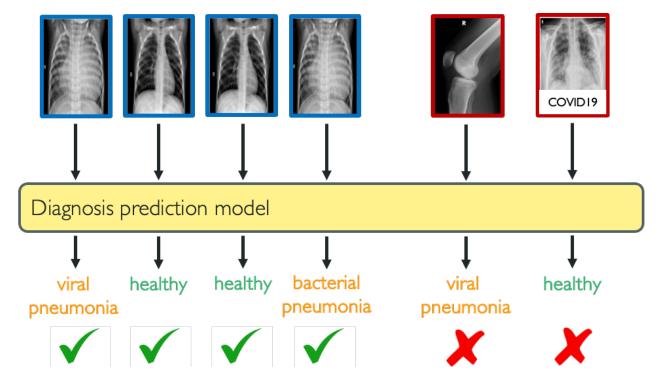
When can't we predict on OOD data? Novel classes



When can't we predict on OOD data? Novel classes



When can't we predict on OOD data? Novel classes



When can't we predict on OOD data? Strong distribution shifts

 $\mathbb{P}(X,Y)$ determined by $(\theta^{\star}, \theta_e)$ invariant domain-specific parameters parameters

When can't we predict on OOD data? Strong distribution shifts

 $\mathbb{P}(X,Y)$ determined by $(\theta^{\star}, \theta_e)$ invariant domain-specific parameters parameters

When can't we predict on OOD data? Strong distribution shifts

 $\mathbb{P}(X,Y)$ determined by $(heta^{\star}, heta_{e})$ invariant domain-specific parameters parameters training distributions $\mathcal{P}_{train} = \mathcal{P}(\theta^{\star}, \Theta_{train})$

 θ^{\star}

 θ_1

 θ_2

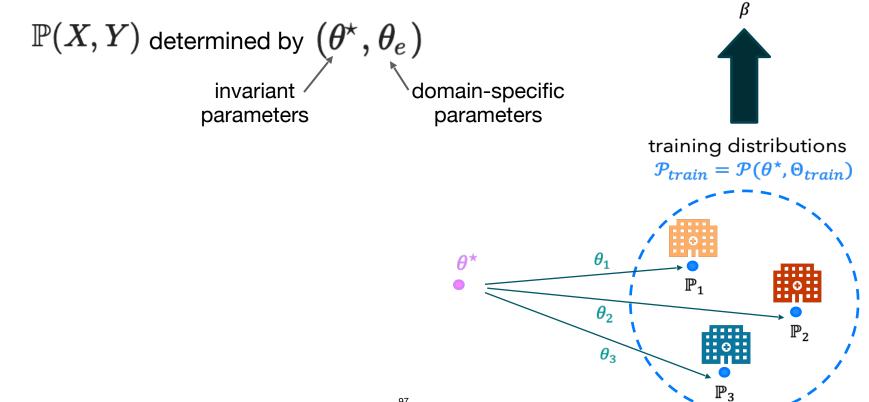
 θ_3

₽ı

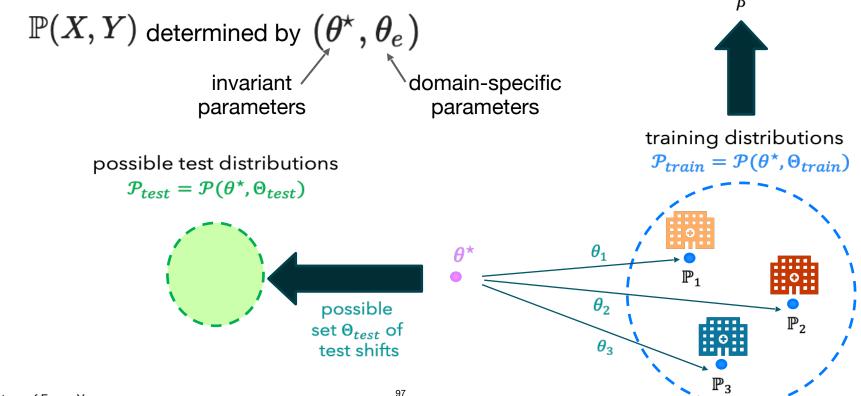
 \mathbb{P}_2

Figures courtesy of Fanny Yang.

When can't we predict on OOD data? **Strong distribution shifts** Model

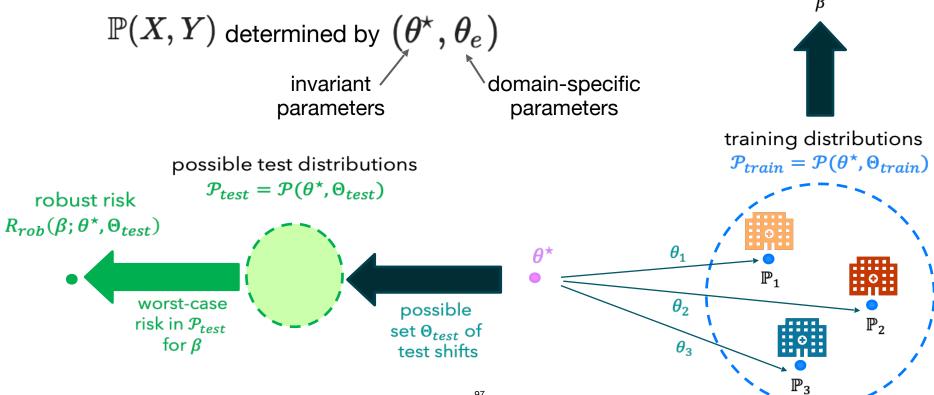


When can't we predict on OOD data? Strong distribution shifts Model



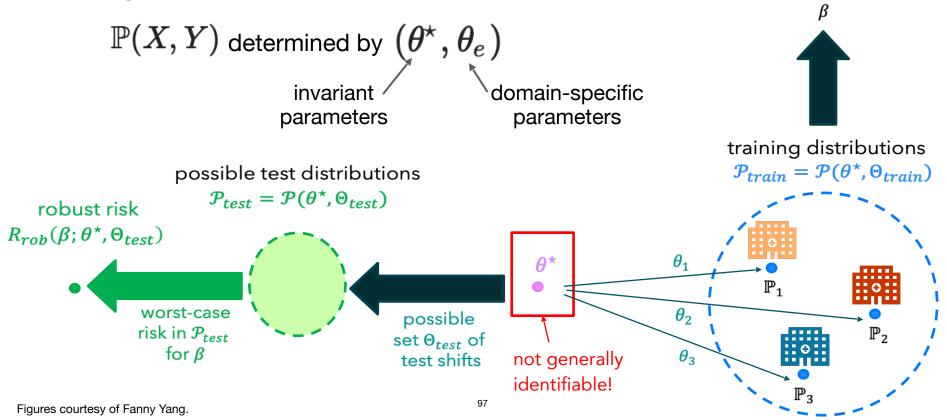
Figures courtesy of Fanny Yang.

When can't we predict on OOD data? **Strong distribution shifts** Model



Figures courtesy of Fanny Yang.

When can't we predict on OOD data? Strong distribution shifts Model



Impossibility result for distribution shifts

Achievable distributional robustness when the robust risk is only partially identified

Julia Kostin¹, Nicola Gnecco^{*2}, and Fanny Yang¹

¹Department of Computer Science, ETH Zurich ²Department of Mathematics, Imperial College London

Mean shifts during test time assumed to lie in $\Theta_{test} = \{\theta_{test}: \theta_{test}\theta_{test}^{\top} \leq \gamma M_{seen} + \gamma' M_{unseen}\}$

Test time shifts assumptions

Covariance with range in span of seen shift directions $range(M_{seen}) \subset span \{\theta_e\}_{e \in [k]}$

Projection matrix onto unseen direction $range(M_{seen}) \perp span \{\theta_e\}_{e \in [k]}$

Impossibility result for distribution shifts

Achievable distributional robustness when the robust risk is only partially identified

Julia Kostin¹, Nicola Gnecco^{*2}, and Fanny Yang¹

¹Department of Computer Science, ETH Zurich ²Department of Mathematics, Imperial College London

Mean shifts during test time assumed to lie in
$$\Theta_{test} = \{\theta_{test}: \theta_{test} \theta_{test}^{\mathsf{T}} \leq \gamma M_{seen} + \gamma' M_{unseen}\}$$

Test time shifts assumptions

Covariance with range in span of seen shift directions $range(M_{seen}) \subset span \{\theta_e\}_{e \in [k]}$

Projection matrix onto unseen direction $range(M_{seen}) \perp span \{\theta_e\}_{e \in [k]}$

Impossibility result for distribution shifts

Achievable distributional robustness when the robust risk is only partially identified

Julia Kostin¹, Nicola Gnecco^{*2}, and Fanny Yang¹

¹Department of Computer Science, ETH Zurich ²Department of Mathematics, Imperial College London

Mean shifts during test time assumed to lie in
$$\Theta_{test} = \{\theta_{test}: \theta_{test}\theta_{test}^{\top} \leq \gamma M_{seen} + \gamma' M_{unseen}\}$$

Test time shifts assumptions

Covariance with range in span of seen shift directions $range(M_{seen}) \subset span \{\theta_e\}_{e \in [k]}$

Projection matrix onto unseen direction: $range(M_{seen}) \perp span \{\theta_e\}_{e \in [k]}$

Main theoretical result

Information-theoretic lower bound on robust risk.

Corollary

- **No "unseen" shifts:** Existing OOD generalization algorithms (e.g. anchor regression) are optimal.
- No "seen" shifts: Anchor regression is not better than ordinary least squares.

What if we cannot predict reliably outside of the training distribution?

What if we cannot predict reliably outside of the training distribution?

A: Flag out-of-domain samples and abstain.

Traditional OOD detection methods

Unsupervised OOD i.e. only observe in-distribution samples.

Examples:

Density estimation e.g. in NN embedding space

Predictive uncertainty e.g. ensembles

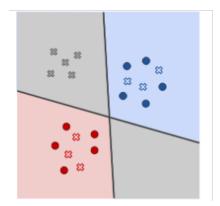
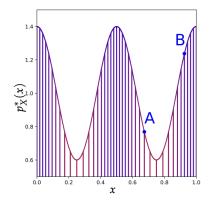
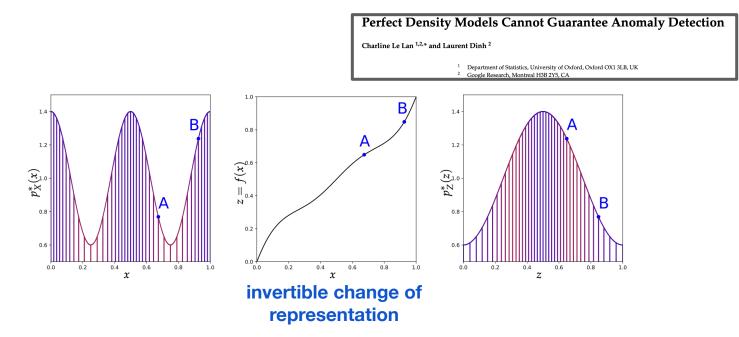
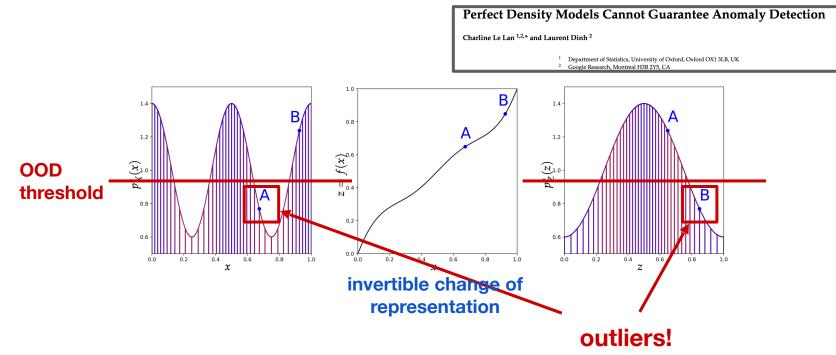


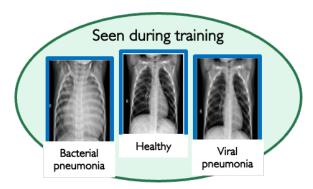
Figure sources: https://link.springer.com/article/10.1007/s10044-021-00998-6, https://arxiv.org/abs/2012.05825

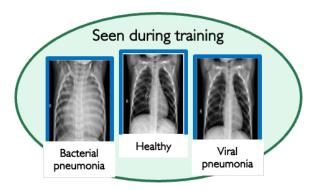
Perfect Density Models Cannot Guarantee Anomaly Detection	
Charline Le Lan ^{1,2,*} and Laurent Dinh ²	
1	Department of Statistics, University of Oxford, Oxford OX1 3LB, UK Google Research, Montreal H3B 2YS, CA

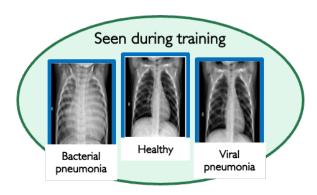


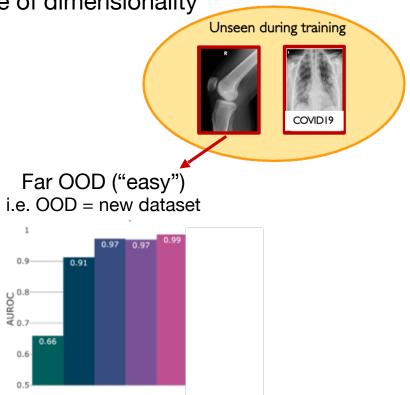


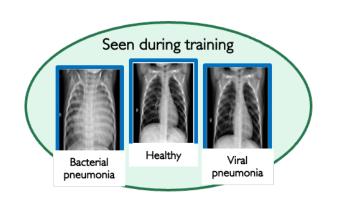


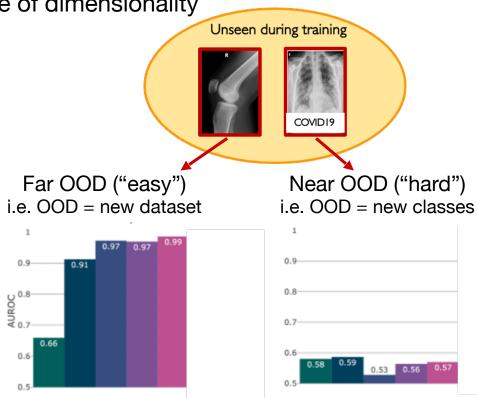












Diverse pre-training data

Pre-train on ImageNet21k

Exploring the Limits of Out-of-Distribution Detection

 Stanislav Fort*
 Jie Ren*

 Stanford University
 Google Research, Brain Team

 sfort1@stanford.edu
 jjren@google.com

Balaji Lakshminarayanan Google Research, Brain Team balajiln@google.com

Diverse pre-training data

Exploring the Limits of Out-of-Distribution Detection

Stanislav Fort* Stanford University Goo sfort1@stanford.edu

Jie Ren* Google Research, Brain Team jjren@google.com Balaji Lakshminarayanan Google Research, Brain Team balajiln@google.com

Pre-train on ImageNet21k

Fine-tune on CIFAR10

Outliers: CIFAR100

San 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19

Unsup. method: Pretrained method: AUROC 0.80 0.97

Diverse pre-training data

Exploring the Limits of Out-of-Distribution Detection

Stanislav Fort*Stanford UniversityGoosfort1@stanford.edu

Jie Ren* Google Research, Brain Team jjren@google.com Balaji Lakshminarayanan Google Research, Brain Team balajiln@google.com

Pre-train on ImageNet21k

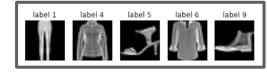
Fine-tune on CIFAR10

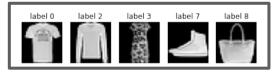
Outliers: CIFAR100

Unsup. method: Pretrained method: 0.80 0.97

Fine-tune on 5-class FashionMNIST

Outliers: remaining FashionMNIST classes





AUROC

0.82

0.87

Unsup. method: Pretrained method:

ľ

103

Using proxy OOD data

Natural proxy OOD data

DEEP ANOMALY DETECTION WITH OUTLIER EXPOSURE

Dan Hendrycks University of California, Berkeley hendrycks@berkeley.edu Mantas MazeikaThomasUniversity of ChicagoOregonmantas@ttic.edutgd@on

Thomas Dietterich Oregon State University tgd@oregonstate.edu

Known outliers: TinyImages dataset (superset of CIFAR10/100)

Synthetic proxy OOD data

CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances

> Jihoon Tack^{*†}, Sangwoo Mo^{*‡}, Jongheon Jeong[‡], Jinwoo Shin^{†‡} [†]Graduate School of AI, KAIST [‡]School of Electrical Engineering, KAIST

Known outliers: synthetic image transformations

(a) Original (

(b) Cutout (c) Sobel

(d) Noise (e) Blur

(f) Perm (g) Rotate

104

Using proxy OOD data

DEEP ANOMALY DETECTION WITH OUTLIER EXPOSURE

Dan Hendrycks University of California, Berkeley hendrycks@berkeley.edu

Mantas Mazeika University of Chicago mantas@ttic.edu Thomas Dietterich Oregon State University tgd@oregonstate.edu

In-distribution data:

5-class CIFAR10

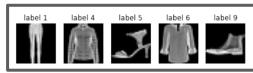
Outliers: remaining CIFAR10 classes

AUROC

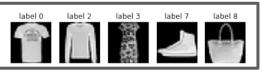
Outlier exposure method:

0.82

In-distribution data: 5-class FashionMNIST



Outliers: remaining FashionMNIST classes

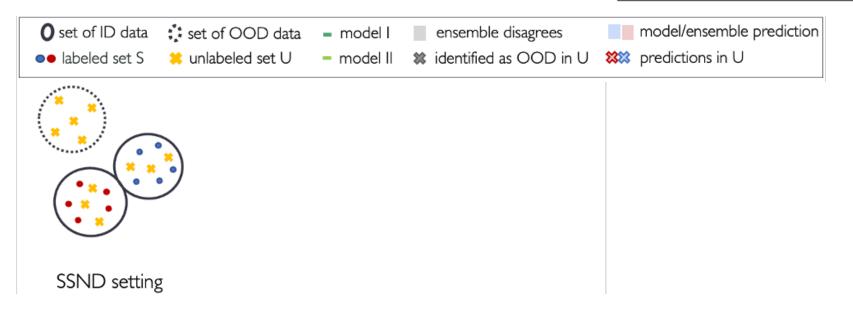


AUROC **Outlier exposure method:** 0.66

Semi-supervised OOD detection Leveraging unlabeled data

Semi-supervised novelty detection using ensembles with regularized disagreement

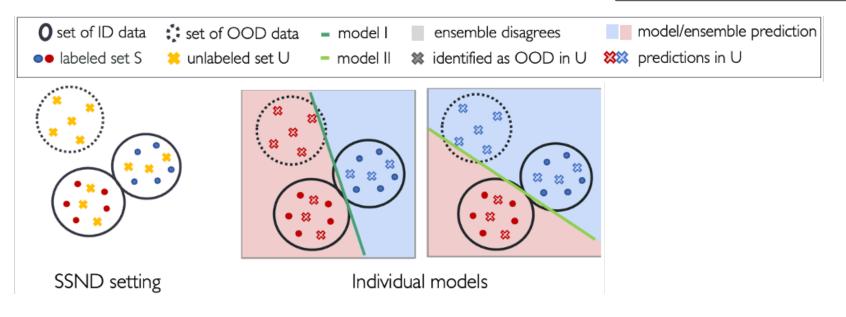
Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland



Semi-supervised OOD detection Leveraging unlabeled data

Semi-supervised novelty detection using ensembles with regularized disagreement

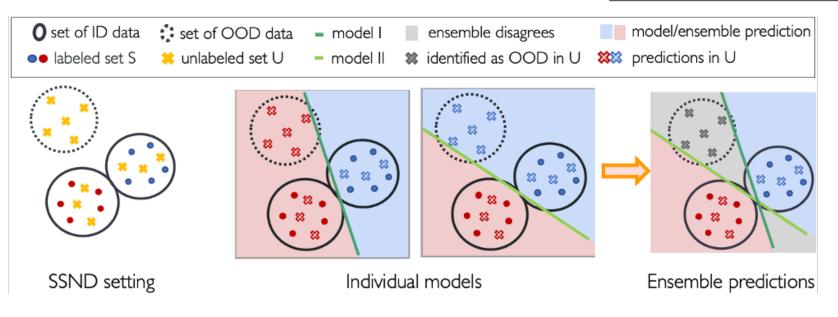
Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland



Semi-supervised OOD detection Leveraging unlabeled data

Semi-supervised novelty detection using ensembles with regularized disagreement

Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland



sample x is flagged as OOD if "disagreement" > threshold

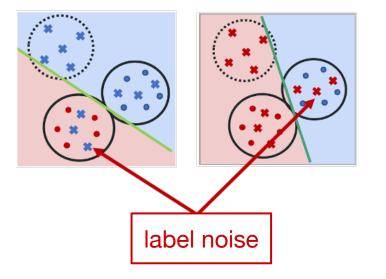
e.g. average pairwise TV distance between predictive distributions of the models in ensemble

Semi-supervised OOD detection

Key ingredient: Appropriate regularization

Semi-supervised novelty detection using ensembles with regularized disagreement

Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland

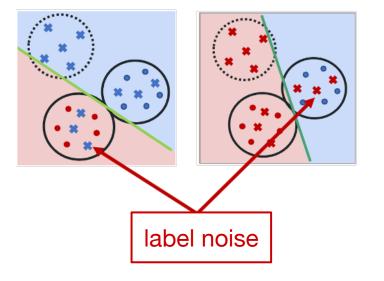


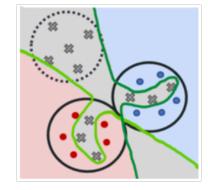
Semi-supervised OOD detection

Key ingredient: Appropriate regularization

Semi-supervised novelty detection using ensembles with regularized disagreement

Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland



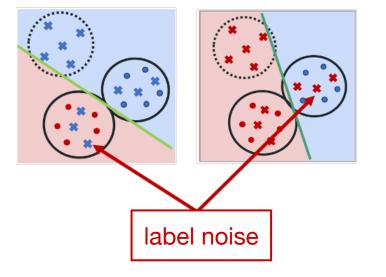


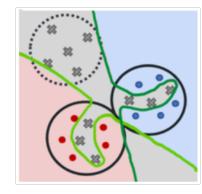
Too much diversity

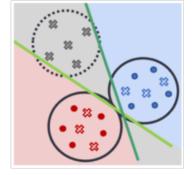
Semi-supervised OOD detection Key ingredient: Appropriate regularization

Semi-supervised novelty detection using ensembles with regularized disagreement

Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland







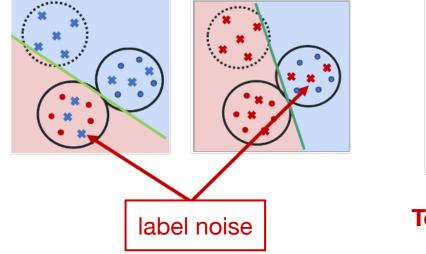
Too much diversity

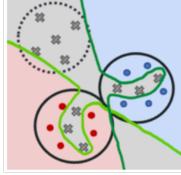
Right amount of diversity

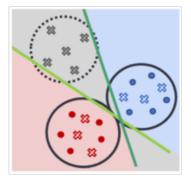
Semi-supervised OOD detection Key ingredient: Appropriate regularization

Semi-supervised novelty detection using ensembles with regularized disagreement

Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland





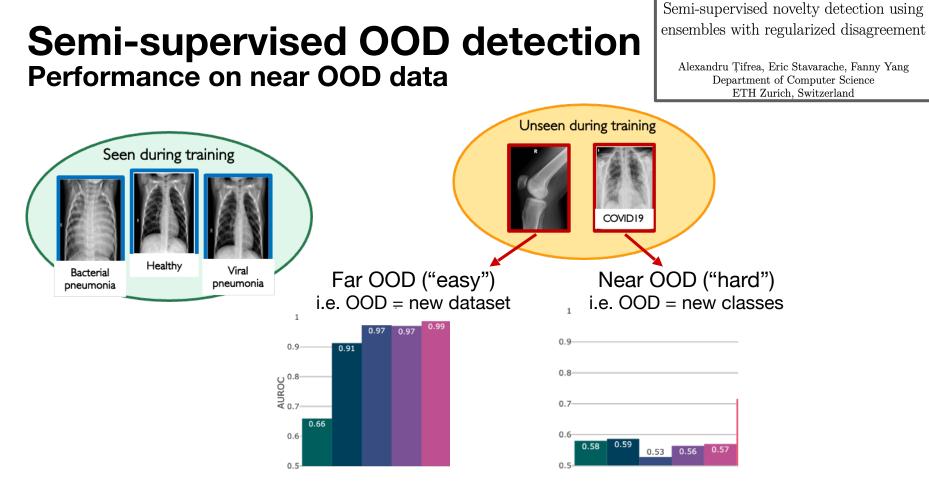


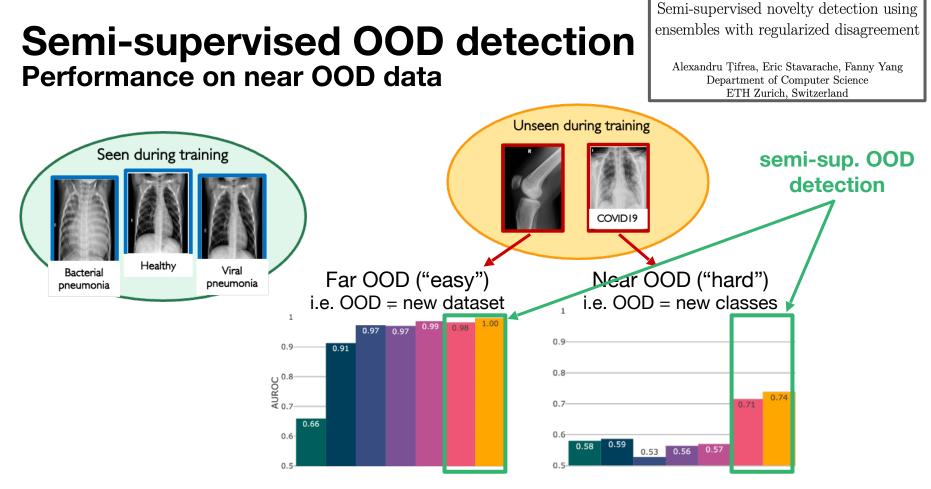
Too much diversity

Right amount of diversity

Idea: regularization with strength chosen using ID validation set

i.e. control FPR (ID samples incorrectly flagged as OOD)





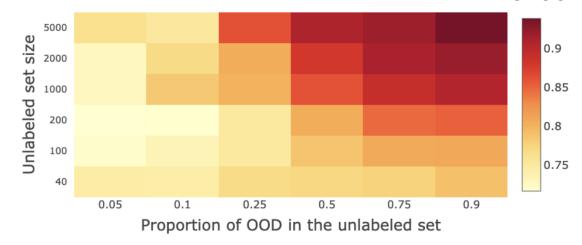
Challenge #1: not suitable for real-time applications

Semi-supervised novelty detection using ensembles with regularized disagreement

Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland

Challenge #1: not suitable for real-time applications

Challenge #2: not suitable for anomaly detection i.e. singleton outliers



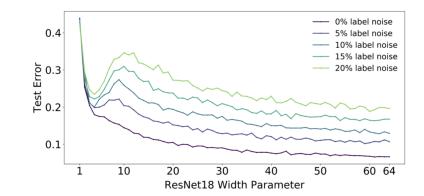
Semi-supervised novelty detection using ensembles with regularized disagreement

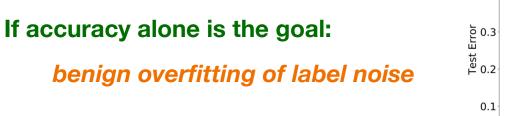
Alexandru Țifrea, Eric Stavarache, Fanny Yang Department of Computer Science ETH Zurich, Switzerland

AUROC

Outlook and future directions

If accuracy alone is the goal: benign overfitting of label noise



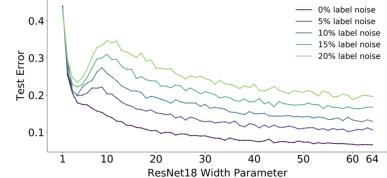


0.4 0.4 0.3 0.3 0.2 0.1 10 20 30 40 50 60 64 0.4 0.1 10 20 30 40 50 60 64 0.4 0.1

0% label noise

If we care about trustworthiness:

This tutorial: Several examples of trustworthy learning algorithms that work well under label noise, missing data etc.



If we care about trustworthiness:

This tutorial: Several examples of trustworthy learning algorithms that work well under label noise, missing data etc.

Open questions

- What other data-related limitations do existing trustworthy algorithms suffer from?
- How to improve trustworthiness in other difficult problem settings?

Figure sources: https://arxiv.org/pdf/1912.02292

If accuracy alone is the goal:

SSL cannot be simultaneously better than both unsupervised and supervised learning Can semi-supervised learning use all the data effectively? A lower bound perspective

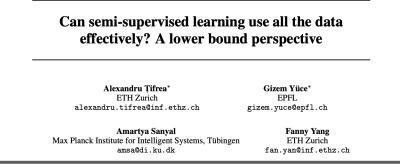
Alexandru Țifrea* ETH Zurich alexandru.tifrea@inf.ethz.ch Gizem Yüce* EPFL gizem.yuce@epfl.ch

Amartya Sanyal Max Planck Institute for Intelligent Systems, Tübingen amsa@di.ku.dk Fanny Yang ETH Zurich fan.yan@inf.ethz.ch

If accuracy alone is the goal:

SSL cannot be simultaneously better than both unsupervised and supervised learning

If we care about trustworthiness:

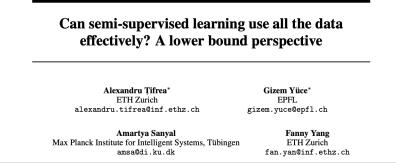


This tutorial: Several examples where unlabeled data can help to overcome limitations of supervised learning.

If accuracy alone is the goal:

SSL cannot be simultaneously better than both unsupervised and supervised learning

If we care about trustworthiness:



This tutorial: Several examples where unlabeled data can help to overcome limitations of supervised learning.

Open questions

- How fundamental are the improvements to trustworthiness due to unlabeled data?
- What other kinds of (potentially noisy) side information can be used to improve trustworthiness?

