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Two problems with data in ML

● Unlabelled data is significantly 
more abundant than Labelled data.

● Label noise is ubiquitous in real 
world data
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How availability and quality of labels (and data) specifically 
impact Fairness, Privacy, and Robustness of ML Algorithms

In this tutorial, we will look at
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● Introduction
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● Privacy in Machine Learning
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● Privacy and Disparate Impact

● Good data incurs less cost

● Adversarial Robustness

● Distributional Generalisation

● Out-of-distribution detection

● Partial group labels

● No group labels

● Low-label regime
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White Black False positive rate: 
FPR=P[predicted healthy | actually sick]

FPR[White] = 0.16

FPR[Black] = 0.27

FPR gap = 0.11

The model is accurate 
but not fair!
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Formal definitions of fairness for prediction

8

Individual fairness:

Group fairness: Three broad categories of fairness notions

with categorical or continuous labelsPrediction problem:

‘treating similar individuals similarly’

Remark: Different ML problems (e.g. generative ML) employ similar fairness definitions.

● Equal calibration

● Equal acceptance rates 
e.g. statistical parity

● Equal error rates 

e.g. Equal Opportunity
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Trivial prediction models (e.g. random guessing) can achieve perfect fairness 
e.g. for binary classification and two groups

State-of-the-art prediction models are often unfair
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Fairness violation

Worse Pareto frontiers

Better Pareto frontiers

need special  
mitigation algorithms 
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1) Pre-processing mitigations

High-level idea: Change the training data 
Inspired by principle of “Fairness Through Unawareness”

Examples: 
● feature selection

● fair representation learning

● importance sampling
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Fairness mitigation strategies
(potentially unfair model),

2) In-processing mitigations

High-level idea: Change the training algorithm 
Employ ideas from multi-objective learning

Examples: 
● regularized learning

● constrained learning

unfairness penalty
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Fairness mitigation strategies
(potentially unfair model),

3) Post-processing mitigations

High-level idea: Change the outputs of a pre-trained model
e.g. group-dependent transformation of outputs:

Examples: 
● group-dependent post-hoc transformations

● group-agnostic transformations


	 e.g. fair predictions irrespective of person’s willingness to provide sensitive attribute
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Challenges faced by fairness mitigations

14

Pre-, in-, post-processing mitigations need training data with group labels.

Naive baseline: “predict according to pre-trained model with probability p, and predict 0 with probability (1-p)” 
In-processing mitigation: state-of-the-art MinDiff method

What happens when group labels are scarce?

Figure source: https://arxiv.org/abs/2312.02592

Dataset: Adult


Y = income; A = gender

Issue #1: Group labels are difficult to collect. 
e.g. group labels are often sensitive attributes (e.g. gender, ethnicity, age etc)

SOTA method as poor 
as naive baseline

https://arxiv.org/abs/2312.02592
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Issue #2: Class label scarcity can amplify unfairness.

Figure source: https://arxiv.org/pdf/2312.08559 

True Positive Rate gapAccuracy

more unfairless accurate
Dataset: Communities & Crime


Y = crime rate; A = ethnicity

What happens in the low-label regime?

Labeled data can be expensive to collect.

worse accuracy AND fairness 
in low-label regime

e.g. fair active learning strategies

https://arxiv.org/pdf/2312.08559
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intersectional fairness amplifies data scarcity 
e.g. avoid discriminating against Hispanic females 
aged 30-40
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Issue #2: Class label scarcity can amplify unfairness.

Figure source: https://arxiv.org/pdf/2312.08559 

True Positive Rate gapAccuracy

more unfairless accurate
Dataset: Communities & Crime


Y = crime rate; A = ethnicity

What happens in the low-label regime?

Labeled data can be expensive to collect.

worse accuracy AND fairness 
in low-label regime

e.g. fair active learning strategies

https://arxiv.org/pdf/2312.08559
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Fairness in the low-label regime
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Problem setting: Fairness with partial group labels

Reminder:
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overfitting!

Case study: In-processing mitigations with partial group labels
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R
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Test fairness violation

Training fairness violation

Test fairness violation

Training fairness violation

(X, Y) + sensitive attribute A i.e. group label

large 
dataset

small 
dataset

covariates X; class labels Y
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● drop samples with missing A

Strategies for missing sensitive attributes A 
e.g. process data + in-processing fairness mitigation

Dataset: UTKFace

Y = age group; A = ethnicity

● pseudo-labels from classifier               trained on 

● impute A uniformly at random

● pseudo-labels only on high-confidence samples otherwise random value for A

naive mitigations 
are suboptimal
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Suboptimal #1: 
always impute 
random label

Suboptimal #2: 
always impute pseudo-

label from   

optimal τ*

Predict missing sensitive attributes A: ?

Use validation set  
(with group labels)
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Is thresholding confidence 
an optimal strategy?

Dataset: HMDA

Y = ‘was loan approved?’ 
A = ethnicity

thresholding confidence can 
lead to poor fairness estimation

Weighted estimator also fails 
(but differently)
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e.g. necessary to select hyperparameters like confidence threshold

24

Statistically, often easy to predict the sensitive attribute from little data 
but it can have ethical concerns and can amplify/hide biases in the data



How to deal with partial group labels?

High level strategies 

1. Use proxy for missing sensitive attributes


1. Make fairness mitigations more sample efficient
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Modular sample-efficient  
fairness mitigations
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computation time ~8x faster 
than in-processing

Setup: Equal Opportunity on Adult dataset


Naive baseline: “predict according to          with probability p, and predict 0 with probability (1-p)”
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(logit additive for classification)


Accurate but unfair model:

27

Proposed post-hoc transformation:

In-processing:

Proposed post-processing for learning T:

not group-dependent

any notion of fairness

unlabeled data

output discrepancy

related to          e.g. MSE, KL divergence etc

Modular sample-efficient  
fairness mitigations



Instances of modular multi-objective learning

28

Out-of-domain generalization

Adversarial robustness

LLM alignment
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Summary: Modular fairness mitigations
More sample efficient than in-processing 

iff learning the fairness correction module is statistically efficient 
e.g. T(x) is not a complex function, T(x) has low-dimensional structure (e.g. sparsity)

29

Effective technique to induce any notion of fairness  
iff fairness violations can be measured from observational data 
e.g. T(X) implicitly estimates P(A|X) which might unidentifiable from observational data
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Fairness as worst-group performance

31

Definition A hypothesis       satisfies Rawlsian max-min 
fairness if it maximizes the accuracy of the worst-off group 
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If we know group labels: 
● importance weighting (IW) 
● group distributionally robust optimization (GDRO)

Image source: https://arxiv.org/abs/2302.01385 
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If we know group labels: 
● importance weighting (IW) 
● group distributionally robust optimization (GDRO)

Image source: https://arxiv.org/abs/2302.01385 
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Group labels

CelebA dataset 

In the absence of group labels:  
Two-stage method 

1) identify worse-off group

2) employ e.g. IW/GDRO to improve worst-group error

https://arxiv.org/abs/2302.01385
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Fairness via distributionally robust optimization (DRO)

33

P = (marginal) 
data distribution

r = radius of 
uncertainty set

worst-case loss wrt the uncertainty set Q

determined by         minority 
group proportion

What if no group labels available? 
A: pick a lower bound for 
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Detect worst-group using a biased classifier
DRO: upweights high-loss samples.

34

Majority group Minority group

Alternative: Two-stage method 
1) use biased classifier to identify error set 
2) train fair classifier via IW / GroupDRO

Intuition: a biased classifier will predict 
based on the stronger correlation. 
e.g. background

incorrect predictions where 
spurious correlation does not hold  
i.e. minority groups

Why are two-stage methods expected to work?
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How to train a biased classifier?

35

Setting 1: group labels available for validation set

● custom loss function 
e.g. amplify “easy” examples 

Examples: 
● heavy regularization  

e.g. via early stopping

 Use worst-group validation error to select regularization strength, IW weights etc.
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How to train a biased classifier?

36

Setting 2: no group labels at all

Similar average and worst-group 
accuracy for two-stage methods:
● with no group labels
● with validation group labels

Examples: 
● identify groups from training AND validation data 

with ensemble of biased classifiers to reduce noise 

● post-hoc logit adjustment using       
as an estimate of 
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DRO mitigations in the presence of outliers

37

Recall: Two-stage methods 
1) use biased classifier to identify error set 
2) train fair classifier via IW / GDRO

The opposite of what robust 
statistics literature recommends! 
e.g. can amplify outliers, noisy samples etc

Clustering algorithm that is

● applicable even for |Outliers| ≫ |Minority group|

● computationally efficient

● information-theoretically optimal

Can we get both fairness and robustness to outliers?

Idea: only upweight samples in the error set that are 
computationally identifiable using simple function 
class    .
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unlabeled data labeled data

Research questions 

1) How to acquire the labeled data?


2) How to learn from both labeled 
and unlabeled data?

Fairness problems 

● class imbalance


● group imbalance

        (but potentially balanced classes)

active learning

semi-supervised 
learning
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Uncertainty sampling-based active learning

Uncertainty sampling 
“binary search to find decision boundary”

40

decision 
boundary

uncertainty-based AL

uniform sampling 
and other AL

CIFAR10 dataset

U-AL is more label efficient than 
uniform sampling or other AL

Image source: https://arxiv.org/abs/2111.12880 

https://arxiv.org/abs/2111.12880
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41

best avg-case classifier

true decision boundary

Decision boundary of biased 
classifier is closer to minority class

best avg-case classifiertrue decision boundary

U-AL tends to select more minority 
points to be labeled

U-AL collects a more  
balanced labeled set

Focus on linear classification



Standard active learning can improve fairness

U-AL also mitigates class imbalance in non-linear classification!

Class-imbalanced classification

42

improvement 
thanks to U-AL

imbalanced CIFAR10 imbalanced SVHN

labeled samples labeled samples
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Standard active learning can improve fairness
Group-imbalanced classification

43

Takeaways 
● no explicit group information used anywhere during sampling/learning!

● not all AL strategies help (e.g. coreset sampling)

● U-AL+ERM can be better than passive learning + reweighting
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Using group labels for active learning

Informativeness criterion:  
Disagreement region of ensemble

Fairness criterion:  
Uniform mass on all groups

Acquire labels for samples 
selected according to:



Limitations of uncertainty-based AL

45

U-AL can be on par with or  
even worse than passive learning 
● For high-dimensional data

● For data with lots of label noise

passive learning uncertainty-based AL

Err[U-AL] > Err[PL]



Summary

46

Open questions 

● Impact of class/group label noise


● Interplay between fairness and other evaluation metrics, beyond accuracy

A few examples of fair learning algorithms that

(1) Have fewer data requirements than standard fairness mitigations

(2) Leverage unlabeled data to improve fairness

coming up in the next part
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Privacy can mean a lot of things but two things are important to define:

● What is the private entity ?

● What can the privacy adversary observe ?

ML Algorithm
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Sir Tim-Berners Lee

“Data is a precious thing and will last 
longer than the systems themselves”

50
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US Census and Privacy

● 2010 US Census privacy protections were 
vulnerable to reconstruction attacks.

● Some groups are disproportionately 
affected: 80% of NHPI (Native Hawaiian 
& Pacific Islander) responses in NC were 
fully reconstructed.

● Similar inferences were also shown about 
age and more accurate in smaller “blocks” 

Takeaway: Often privacy violations are stronger in smaller communities.

Vulnerability of sparse data

51
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Informal Theorem: If you try to answer too many questions 
too accurately about a dataset, there’s a clever way for an 
attacker to piece together (almost) the entire original data.

If the original dataset’s privacy is to be protected, some accuracy needs 
to be sacrificed. The study of DP tries to control this trade-off.



Making an Algorithm Differentially Private



Making an Algorithm Differentially Private

Differential Privacy



Making an Algorithm Differentially Private

• Differential Privacy noises the algorithm’s output 
to limit the exposure of any single data point

Differential Privacy



Making an Algorithm Differentially Private

• Differential Privacy noises the algorithm’s output 
to limit the exposure of any single data point

• A Differentially Private ML algorithm produces 
similar models irrespective of whether Alice’s data 
is in the dataset or Bob’s 

Differential Privacy



Making an Algorithm Differentially Private

• Differential Privacy noises the algorithm’s output 
to limit the exposure of any single data point

• A Differentially Private ML algorithm produces 
similar models irrespective of whether Alice’s data 
is in the dataset or Bob’s 

Differential Privacy Alice



Making an Algorithm Differentially Private

• Differential Privacy noises the algorithm’s output 
to limit the exposure of any single data point

• A Differentially Private ML algorithm produces 
similar models irrespective of whether Alice’s data 
is in the dataset or Bob’s 

Differential Privacy Alice Bob



Making an Algorithm Differentially Private

• Differential Privacy noises the algorithm’s output 
to limit the exposure of any single data point

• A Differentially Private ML algorithm produces 
similar models irrespective of whether Alice’s data 
is in the dataset or Bob’s 

Differential Privacy

The replacement of a single data record minimally impacts the trained model

Alice Bob
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One simple formula for implementing DP :

● Compute the algorithm’s sensitivity: how much can the output 
change if the worst data point in the worst input dataset changes

● Add noise proportional to that change magnitude

Today, we will look at two ways in which data quality affects the 
performance of Differentially Private Algorithms 
● Good data requires less added noise for the same level of privacy 
● Some parts of data domain incurs disproportionately higher loss due 

to the Differential privacy than others
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Theorem Exists a convex loss function and data in        , s.t. all DP algorithms  incur extra cost               .
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Theorem For every convex function in        , DP-SGD satisfies DP and cost of DP is less than                 .

Worst-case bounds in the literature
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Naive DP Mean estimation
● DP must protect against worst-case changes.

● A naïve DP estimator clips data to a ball of radius 

● Noise is calibrated to     ; 


● Heavy tails or outliers force      to be large.


● Worst-case sensitivity leads to high noise and error.

● error scales as
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Friendly-Core estimation
In many settings, most points lie in a ball of radius


● A dataset is friendly if every two points have a common neighbor within       

● Friendly-Core removes points with few neighbours 
and outputs w.h.p. a core     with radius    .     

when the data is friendly.

● Estimating mean in the core     results  
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DP Principal Component Analysis

● Similar results known about other 
problems including PCA.


● Key takeaway: 

○ Privacy guaranteed for ALL datasets.

○ When data quality is high,  

utility is better.

Lower bound for any data

Lower bound for sub-gaussian
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DP SGD

(1)
(2)
(3)
(4)

(5)

● DP-SGD is the standard workhorse 
for DP Machine Learning algorithms.

● As we saw earlier, the added noise 
scales with dimensionality of params

● To avoid this, they conduct DP-PCA 
on data before doing DP-SGD.

But,

1. DP-PCA requires additional time

2. DP-PCA incurs additional privacy cost
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Other approaches to leverage unlabelled data

● GEP works in the gradient space

● AdaDPS use public data for gradient pre-conditioning
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ML Model Gibbon

For any distribution     over                       and any binary classifier   

the   -adversarial error is defined as
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Label Noise is ubiquitously interpolated

78

● Trained long enough, NNs fit 
label noise

● Does not always hurt Test 
Accuracy - Benign Overfitting

● Define a model with 100% 
training acc: Interpolator

Question: What about Robust Accuracy ?
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 is an interpolator e.g. Random Forest, 1-NN, NNsh

2ϵ
Region of Adversarial Vulnerability

Label noise
Large dataset  More noisy labels  Large Adversarial Error⟹ ⟹
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Robust Overfitting and label noise
● One of explanations given for Robust overfitting is 

that  adversarial training implicitly adds label noise.

● Larger perturbation radius causes more overfitting

● Simply using “good” examples that are far from the 
decision boundary alleviates parts of the issue
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Improving Robust generalisation

83

Exists simple distribution in    dim where robust 
generalisation requires         times more data.

What about unlabelled data ?

● Clearly, more data helps to avoid robust overfitting
● Regularisation and early-stopping also helps.
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Improving Robust generalisation

84

With unlabelled data

Observation: Robust error can be decomposed into

1. Stability error: Whether prediction is stable in a 
ball around data from the test distribution

2. Classification accuracy: Whether classification in 
the original data distribution is accurate

Classical use of unlabelled data improves 2. Classification accuracy.

To improve robustness, use unlabelled data to improve 1. Stability error.

Recipe: Use adversarial training on pseudo-labels on the unlabelled data
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Robustness to Distribution Shift
● Adversarial Robustness measures performance 

against the worst shift between train and test set.
● More natural distribution shifts exist in the real 

world between train and test data e.g. due to
○ Hard to collect quality data uniformly.
○ Data sources evolve over time

● Robustness to distribution shift requires preserving accuracy when the 
distribution shifts

● Impossible to protect against arbitrary shifts
● Goal is to allow for a graceful degradation with increasing shift
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Accuracy-on-the line

● Accuracy-on-the-line phenomenon: 
ID and OOD accuracy are positively 
correlated.

● Indicates that improving ID accuracy 
also improves OOD accuracy.

● Holds for a wide variety of models 
and datasets
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Label Noise and Distribution Shift
● Question: Is Accuracy-on-the-line robust 

to noisy or low quality labels ?

Accuracy-on-the-wrong line

● Inject and fit random label noise in the training data 

● Presence of multiple “nuisance features” i.e. irrelevant features 

Two sufficient factors for Accuracy-on-the-wrong-line
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Pre-train representation learning on ID data 
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1 2

Train a small ML model on top of the 
features using Dist X

Dist X →OOD. Test on OOD.

Shift Sensitivity = Diff between 

1. Dist X →OOD. Test on OOD.


2. Dist X →ID. Test on ID.


Captures robustness of 
representations
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Mean shifts during test time assumed to lie in

Test time shifts assumptions

Covariance with range in span of seen shift directions

Projection matrix onto unseen directions

shift strengths

Main theoretical result 
Information-theoretic lower 
bound on robust risk.

Corollary 
● No “unseen” shifts: Existing OOD generalization 

algorithms (e.g. anchor regression) are optimal. 
● No “seen” shifts: Anchor regression is not better 

than ordinary least squares.
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A: Flag out-of-domain samples  
and abstain.



Traditional OOD detection methods
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Unsupervised OOD i.e. only observe in-distribution samples.

Density estimation

e.g. in NN embedding space

Predictive uncertainty 

e.g. ensembles

Figure sources: https://link.springer.com/article/10.1007/s10044-021-00998-6, https://arxiv.org/abs/2012.05825 

Examples:

https://link.springer.com/article/10.1007/s10044-021-00998-6
https://arxiv.org/abs/2012.05825
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Challenge #1: Unsupervised OOD detection can be ill-defined

OOD 
threshold

outliers!

invertible change of 
representation

Limitations of unsupervised OOD detection
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Challenge #2: finite samples + curse of dimensionality

Far OOD (“easy”)

i.e. OOD = new dataset

Limitations of unsupervised OOD detection

Near OOD (“hard”)

i.e. OOD = new classes
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Pre-train on ImageNet21k Fine-tune on CIFAR10 Outliers: CIFAR100

                AUROC 
Unsup. method: 0.80 
Pretrained method: 0.97

Fine-tune on  
5-class FashionMNIST

Outliers: remaining 
FashionMNIST classes

        AUROC 
Unsup. method: 0.82 
Pretrained method: 0.87
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Known outliers: TinyImages dataset  
(superset of CIFAR10/100)

In-distribution data:  
5-class FashionMNIST

Outliers: remaining 
FashionMNIST classes

AUROC 
Outlier exposure method: 0.66

In-distribution data:  
5-class CIFAR10

Outliers: remaining 
CIFAR10 classes

AUROC 
Outlier exposure method: 0.82
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Semi-supervised OOD detection
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sample x is flagged as OOD if “disagreement” > threshold

e.g. average pairwise TV distance between predictive distributions of the models in ensemble

Leveraging unlabeled data
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Idea: regularization with strength chosen using ID validation set 
i.e. control FPR (ID samples incorrectly flagged as OOD)

Semi-supervised OOD detection
Key ingredient: Appropriate regularization

Too much diversity
Right amount of 

diversitylabel noise
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Far OOD (“easy”)

i.e. OOD = new dataset

Semi-supervised OOD detection

Near OOD (“hard”)

i.e. OOD = new classes

semi-sup. OOD 
detection

Performance on near OOD data
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Challenge #1: not suitable for real-time applications

Challenge #2: not suitable for anomaly detection i.e. singleton outliers
AUROC

Limitations of  
semi-supervised OOD detection



Outlook and future directions
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Summary: Trustworthy ML and unlabeled data

112

Open questions 
● How fundamental are the improvements to trustworthiness due to unlabeled data?

● What other kinds of (potentially noisy) side information can be used to improve 

trustworthiness?

If accuracy alone is the goal:
SSL cannot be simultaneously better than  

both unsupervised and supervised learning

If we care about trustworthiness:
This tutorial: Several examples where unlabeled data can help to overcome limitations of 
supervised learning.



Thank you!


