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An overloaded term

Privacy

Robustness
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Aspect 2: Label/data quality and availability

Two problems with data in ML Dataset Modality

% error

P i ianifi MNIST image 0.15

Unlabelled data is significantly CIFAR.1L0 imacs 054

more abundant than Labelled data. CIFAR-100 image 5.85

Caltech-2561 image 1.54

e [ abel noise is ubiquitous in real gnégﬁget T image 1(5)51‘3
uicKkpraw 1mage .

world data 20news text 1.09

IMDB text 2.90

. _ . Amazon Reviews' text 3.90

In this tutorial, we will look at AudioSet audio 1.35

How availability and quality of labels (and data) specifically
impact Fairness, Privacy, and Robustness of ML Algorithms
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Today’s Plan

Introduction

Fairness in Machine Learning

Privacy in Machine Learning

Robustness in Machine Learning

Outlook and Future Direction

Partial group labels
No group labels

Low-label regime

Privacy and Disparate Impact
Good data incurs less cost

Adversarial Robustness
Distributional Generalisation

Out-of-distribution detection
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Example of ML model unfairness
White

False positive rate:
FPR=P[predicted healthy | actually sick]

FPR[White] = 0.16
FPR[Black] = 0.27

| FPR gap = 0.11

[Diagnosis prediction model
The model is accurate
1 1 1 1 1 1 but not fair!

healthy healthy healthy

Underdiagnosis bias of artificial intelligence
f ( f x x f algorithms applied to chest radiographs in under-
served patient populations

Laleh Seyyed-Kalantari &, Haoran Zhang, Matthew B. A. McDermott, Irene Y. Chen & Marzyeh

Ghassemi
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Formal definitions of fairness for prediction

Prediction problem: Y = f (X)) with categorical or continuous labels

Individual fairness: d, (f(21), f (22)) < Cd, (21, 22)

Fairness Through Awareness ‘treating similar individuals similarly’

Cynthia Dwork” Moritz Hardt' Toniann Pitassi* Omer Reingold®
Richard Zemell

Group fairness: Three broad categories of fairness notions Fairness
e Equal acceptance rates 3 . 3 and
e.g. statistical parity P(Y|A = White) = P(Y|A = Black) Machine
Learning
e Equal error rates . .
e.g. Equal Opportunity FPR(A - Whlte) - FPR(A - Black)
e Equal calibration

Remark: Different ML problems (e.g. generative ML) employ similar fairness definitions.
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Fairness-error trade-off

State-of-the-art prediction models are

often unfair
@UBLICA

Machine Bias

There's software used across the country to predict future criminals. And it's biased

Elhe New York Times

Al Could Worsen Health Disparities

In a health system riddled with inequity, we risk making
dangerous biases automated and invisible.

MCESCIBAIE  BUSINESS AUG 21, 2817 9:88 AM

against blacks.

M I I N ews by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

ON CAMPUS AND AROUND THE WORLD

Study reveals why Al models that analyze
medical images can be biased

These models, which can predict a patient’s race, gender, and age, seem
to use those traits as shortcuts when making medical diagnoses.

Machines Taught by Photos Leam a Sexist View of

Algorithms showed a tendency to associate women with shopping and men with shooting.

Women




Fairness-error trade-off

State-of-the-art prediction models are often unfair s

Machine Bias

There's software used across the country to predict future criminals. And it's biased

Elhe New !_lork Cimes against blacks.
. . . MlT News by}ulinAngwin,}effLarson,Sur}:\l]}f:t:j:dLaurenKiruhner,PruPublim
AL Could Worsen Health Disparities | | === _
LE L J
In a health system riddled with inequity, we risk making Study reveals why Al models that analyze
dangerous biases automated and invisible. medical images can be biased

These models, which can predict a patient’s race, gender, and age, seem
to use those traits as shortcuts when making medical diagnoses.

Machines Taught by Photos Leam a Sexist View of Women

Algorithms showed a tendency to associate women with shopping and men with shooting.

Trivial prediction models (e.g. random guessing) can achieve perfect fairness
e.g. for binary classification and two groups p (f/ — 1A= 0) —p (ff — 1A= 1) ~ 0.5



Fairness-error Pareto frontier
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OPT]MSe . arg mfin Epred (f 3 Dpred)7

1) -processing mitigations

Dpred = {(x4,yi) b1 ~ Pxy

High-level idea: Change the training data

Inspired by principle of “Fairness Through Unawareness”

Examples:

e feature selection
e fair representation learning

e importance sampling

(potentially unfair model)



Fairness mitigation strategies

OPTyase : arg mfin Epred(f; Dpred)v Dpred = {(xi,¥i) }ie1 ~ Pxy (potentially unfair model)



Fairness mitigation strategies

OPTyase : arg mfin Ep’r’ed(f; Dpred) Dpred = {(xi,¥i) }ie1 ~ Pxy (potentially unfair model)

2) In-processing mitigations

High-level idea: Change the training algorithm
Employ ideas from multi-objective learning



Fairness mitigation strategies

OPTyase : arg mfin Ep’r’ed(f; Dpred) Dpred = {(xi,¥i) }ie1 ~ Pxy (potentially unfair model)

2) In-processing mitigations

High-level idea: Change the training algorithm
Employ ideas from multi-objective learning

€.9. arg mfin »Cpred(f; Dpred) + Aﬁfair(fQ Dsensitive) with Desensitive = {(wu Yi, ai)}zr'il



Fairness mitigation strategies

OPTyase : arg mfin Ep’r’ed(f; Dpred) Dpred = {(xi,¥i) }ie1 ~ Pxy (potentially unfair model)

2) In-processing mitigations

High-level idea: Change the training algorithm
Employ ideas from multi-objective learning

€.9. arg mfinlﬁpred(f; Dpred) + >\£fa,7;'r(f; Dsensitive) with Dsensitive = {(wu Yi ai)}zr'il




Fairness mitigation strategies

OPTpase : arg mfin »Cpred(f§ Dpred) Dpred = {(xi,¥i) }ie1 ~ Pxy (potentially unfair model)

2) In-processing mitigations

High-level idea: Change the training algorithm
Employ ideas from multi-objective learning

€.9. arg mfinl»cpred(f; Dpred) + >\£fa,z"r(f; Dsensitive) with Dgensitive = {(wu Yi, ai)}?ll

unfairness penalty




Fairness mitigation strategies

OPTpase : arg mfin »Cpred(f§ Dpred) Dpred = {(xi,¥i) }ie1 ~ Pxy (potentially unfair model)

2) In-processing mitigations

High-level idea: Change the training algorithm
Employ ideas from multi-objective learning

€.9. arg mfinl»cpred(f; Dpred) + >\£fa,z"r(f; Dsensitive) with Dgensitive = {(wu Yi, ai)}?ll

unfairness penalty

Examples:

® regularized learning

e constrained learning
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Fairness mitigation strategies

OPTyase : arg mfin Ep’r’ed(f; Dpred)a Dpred = {(xi,¥i) }ie1 ~ Pxy (potentially unfair model)

3) -processing mitigations
High-level idea: Change the outputs of a pre-trained model Fﬂ

White/ Viack

fvase(x) > 0.5 fpase(x) > 0.65
Examples: yes no yes no

e.g. group-dependent transformation of outputs:

(Y, A) STy <Y) e {0, 1}

e group-dependent post-hoc transformations

® group-agnostic transformations
e.qg. fair predictions irrespective of person’s willingness to provide sensitive attribute
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Pre-, in-, post-processing mitigations need training data with group labels.

Issue #1: Group labels are difficult to collect.
e.g. group labels are often sensitive attributes (e.g. gender, ethnicity, age etc)

What happens when group labels are scarce?

Naive baseline: “predict according to pre-trained model with probability p, and predict 0 with probability (1-p)”
In-processing mitigation: state-of-the-art MinDiff method
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Labeled data can be expensive to collect.

Issue #2: Class label scarcity can amplify unfairness.

What happens in the low-label regime?
e.g. fair active learning strategies
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Challenges faced by fairness mitigations

Labeled data can be expensive to collect.

Issue #2: Class label scarcity can amplify unfairness.

What happens in the low-label regime?
e.g. fair active learning strategies

Accuracy True Positive Rate gap
N % 035
// 0.30
0.90 p [
> 0.25
9 —— FARE o
5085 —— PANDA £0.20
® FAL 0.15 \_\_\
0.80 —— FALCUR '
—— passive 0.10 \\
0.75
0.05
0 100 [200 300 400 500 0 100 f[200 300 400 500
labels labels
less accurate more unfair

worse accuracy AND fairness
in low-label regime

intersectional fairness amplifies data scarcity

e.g. avoid discriminating against Hispanic females
aged 30-40

Dataset: Communities & Crime

Y = crime rate; A = ethnicity

Figure source: https://arxiv.org/pdf/2312.08559
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Fairness — Outline

Fairness with partial group labels

Fairness with no group labels

Fairness in the low-label regime
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(X, Y) + sensitive attribute A i.e. group label
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Problem setting: Fairness with partial group labels

Dpred — {(Xu Yz) ?:1 Iarge Dsensitive — {(Xu }fh Az) ?:1 Sma"
dataset dataset
covariates X; class labels Y (X, Y) + sensitive attribute A i.e. group label

Case study: In-processing mitigations with partial group labels
Reminder: OPTIP . arg mfin »C'pred(f; Dpred) + )\Lfair (f7 Dsensitive)
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Problem setting: Fairness with partial group labels

Dpred — {(Xu Yz) ?:1

covariates X; class labels Y

large

dataset

Dsensitive = {(Xz, Y:, Az) ?:1 |:> small
dataset

(X, Y) + sensitive attribute A i.e. group label

Case study: In-processing mitigations with partial group labels

Reminder: OPTyp : arg mfin Lpred(f:

FPRgap
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Proxy for missing sensitive attributes

Strategi es for ml SSin g Sensitive attributes A Learning Fair Classifiers with Partially Annotated Group Labels

e.g. process data + in-processing fairness mitigation
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Strategi es for ml SSin g Sensitive attributes A Learning Fair Classifiers with Partially Annotated Group Labels
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e impute A uniformly at random
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Strategi es for ml SSin g Sensitive attributes A Learning Fair Classifiers with Partially Annotated Group Labels

e.g. process data + in-processing fairness mitigation
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e pseudo-labels from classifier JEA (z) trained on Dsepsitive = {(Zi, ai)}.
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Proxy for missing sensitive attributes

Strategies for missing sensitive attributes A
e.g. process data + in-processing fairness mitigation

e impute A uniformly at random

e pseudo-labels from classifier JEA (z) trained on Dsepsitive = {(Zi, ai)}.

Learning Fair Classifiers with Partially Annotated Group Labels

Sangwon Jung'* Sanghyuk Chun?' Taesup Moon!3*

! Department of ECE/ASRI, Seoul National University 2 NAVER Al Lab
3 Interdisciplinary Program in Artificial Intelligence, Seoul National University
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High-confidence group pseudo-labels

Predict missing sensitive attributes A:

a

|

arg max f4 ()
draw from P (A|Y = y)

fa(z)>T
otherwise
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a
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arg max f4 ()
draw from P (A|Y = y)
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otherwise
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High-confidence group pseudo-labels

Predict missing sensitive attributes A- 9 Learning Fair Classifiers with Partially Annotated Group Labels
u
A A Sangwon Jung'* Sanghyuk Chun?' Taesup Moon!3*
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Acceptance Rate Estimation Bias

Is thresholding confidence
an optimal strategy?
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Summary: Using a proxy group label

Effective at mitigating unfairness

as long as sufficient group-labeled validation data is available
e.g. necessary to select hyperparameters like confidence threshold
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Summary: Using a proxy group label

Effective at mitigating unfairness

as long as sufficient group-labeled validation data is available
e.g. necessary to select hyperparameters like confidence threshold

Statistically, often easy to predict the sensitive attribute from little data
but it can have ethical concerns and can amplify/hide biases in the data

Michael Veale

Fairer machine learning in the real world: Mitigating
discrimination without collecting sensitive data

1 and Reuben Binns?
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How to deal with partial group labels?

High level strategies

1. Use proxy for missing sensitive attributes

1. Make fairness mitigations more sample efficient



FRAPPE: A Group Fairness Framework for Post-Processing Everything

Modular sample-efficient
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Setup: Equal Opportunity on Adult dataset

Naive baseline: “predict according to fpase with probability p, and predict 0 with probability (1-p)”
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Modular sample-efficient

fairness mitigations
Setup: Equal Opportunity on Adult dataset

Naive baseline: “predict according to fpase with prob
* MinDiff w/ ES (in-proc)
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Modular sample-efficient

fairness mitigations

Accurate but unfair model:

FRAPPE: A Group Fairness Framework for Post-Processing Everything
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foase = arg;nin ['pred f; Dpred)
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Modular sample-efficient

fairness mitigations

Accurate but unfair model:

Proposed post-hoc transformation:

In-processing:
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FRAPPE: A Group Fairness Framework for Post-Processing Everything

Modular sample-efficient
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Proposed post-hoc transformation: ffair(x) = frase(x*) + T(x)  not group-dependent
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Instances of modular multi-objective learning

LLM alignment

Out-of-domain generalization

Asymptotics of Language Model Alignment

Joy Qiping Yang Salman Salamatian

University of Sydney Massachusetts Institute of Technology
Sydney, Australia Cambridge, MA, USA
qyan6238Quni.sydney.edu.au salmansa@mit.edu

Ziteng Sun, Ananda Theertha Suresh, Ahmad Beirami
Google Research

New York, NY, USA

{zitengsun, theertha, beirami}@google.com

OVERPARAMETERISATION AND WORST-CASE GENER-
ALISATION: FRIEND OR FOE?

Aditya Krishna Menon, Ankit Singh Rawat & Sanjiv Kumar
Google Research

New York, NY

{adityakmenon, ankitsrawat,sanjivk}@google.com

Adversarial robustness

Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

Unlabeled Data Improves Adversarial Robustness

Aditi Raghunathan "' Sang Michael Xie*! Fanny Yang? John C.Duchi' Percy Liang'

Yair Carmon™ Aditi Raghunathan* Ludwig Schmidt
Stanford University Stanford University UC Berkeley
yairc@stanford.edu aditir@stanford.edu ludwig@berkeley.edu
Percy Liang John C. Duchi
Stanford University Stanford University
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Summary: Modular fairness mitigations

More sample efficient than in-processing

iff learning the fairness correction module is statistically efficient
e.g. T(x) is not a complex function, T(x) has low-dimensional structure (e.g. sparsity)
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Summary: Modular fairness mitigations

More sample efficient than in-processing

iff learning the fairness correction module is statistically efficient
e.g. T(x) is not a complex function, T(x) has low-dimensional structure (e.g. sparsity)

Effective technique to induce any notion of fairness

iff fairness violations can be measured from observational data
e.g. T(X) implicitly estimates P(A|X) which might unidentifiable from observational data

Assessing Algorithmic Fairness with Unobserved
Protected Class Using Data Combination

Nathan Kallus
Cornell University, kallus@cornel 1l.edu
Xiaojie Mao
Cornell University, xm77@cornell.edu

Angela Zhou
Cornell University, az434@cornell.edu
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Fairness with no group labels



Fairness as worst-group performance

Definition A hypothesis 2™ satisfies Rawlsian max-min
fairness if it maximizes the accuracy of the worst-off group

h* = argmax min Acc (h|A = a)
h acA

Jonn RawLs
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Mitigation strategies for worst-group fairness

Group labels If we know group labels:
e importance weighting (IW)
e group distributionally robust optimization (GDRO)

Women Men

DISTRIBUTIONALLY ROBUST NEURAL NETWORKS

8 FOR GROUP SHIFTS: ON THE IMPORTANCE OF
< REGULARIZATION FOR WORST-CASE GENERALIZATION
(%)) Shiori Sagawa* Pang Wei Koh*
U) Stanford University Stanford University
(U ssagawa@cs.stanford.edu pangwei@cs.stanford.edu
O Tatsunori B. Hashimoto Percy Liang
Microsoft Stanford University

tahashim@microsoft.com pliang@cs.stanford.edu

Non-Blond

26% 24%

CelebA dataset

Image source: https://arxiv.org/abs/2302.01385 32
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Mitigation strategies for worst-group fairness

Group labels

Women Men

Class label

Non-Blond

26% 24%

CelebA dataset

Image source: https://arxiv.org/abs/2302.01385

If we know group labels:
e importance weighting (IW)
e group distributionally robust optimization (GDRO)

DISTRIBUTIONALLY ROBUST NEURAL NETWORKS

FOR GROUP SHIFTS: ON THE IMPORTANCE OF
REGULARIZATION FOR WORST-CASE GENERALIZATION
Shiori Sagawa* Pang Wei Koh*

Stanford University Stanford University
ssagawa@cs.stanford.edu pangwei@cs.stanford.edu

Tatsunori B. Hashimoto Percy Liang
Microsoft Stanford University
tahashim@microsoft.com pliang@cs.stanford.edu

In the absence of group labels:
Two-stage method
1) identify worse-off group
2) employ e.g. IW/GDRO to improve worst-group error
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Fairness via distributionally robust optimization (DRO)

Fairness Without Demographics in Repeated Loss Minimization

L — [ ]
R erm ( 9) P E P [oé ( 6 , Z ) ] Tatsunori B. Hashimoto !> Megha Srivastava! Hongseok Namkoong® Percy Liang !
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Rdro (0, T) = sup EQ [K (0, YA )] worst-case loss wrt the uncertainty set Q
QeB(P,r)
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Fairness via distributionally robust optimization (DRO)

Fairness Without Demographics in Repeated Loss Minimization

L — [ ]
R erm ( 9) P ]E P [Z ( 6 , Z ) ] Tatsunori B. Hashimoto !> Megha Srivastava! Hongseok Namkoong® Percy Liang !

Rdro (0 ] ’r) = sup EQ [ﬁ (9, YA )] worst-case loss wrt the uncertainty set Q
QEB(P,r)
\

r = radius of
uncertainty set
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Fairness via distributionally robust optimization (DRO)

Fairness Without Demographics in Repeated Loss Minimization

L — [ ]
R erm ( 9) P ]E P [Z ( 6 , Z ) ] Tatsunori B. Hashimoto !> Megha Srivastava! Hongseok Namkoong® Percy Liang !

Rdro (0, 'r) = sup EQ [ﬁ (9, YA )] worst-case loss wrt the uncertainty set Q
QEB(P,r)
\

r=radius of ~_determned by Q'min mMinority
uncertainty set group proportion

What if no group labels available?

A: pick a lower bound for ®min
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Detect worst-group using a biased classifier

DRO: upweights high-loss samples. Alternative: Two-stage method
1) use classifier to identify error set
2) train fair classifier via IW / GroupDRO
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Detect worst-group using a biased classifier

DRO: upweights high-loss samples. Alternative: Two-stage method
1) use classifier to identify error set
2) train fair classifier via IW / GroupDRO

Why are two-stage methods expected to work?

Intuition: a biased classifier will predict

based on the stronger correlation.
e.g. background

incorrect predictions where
|—> spurious correlation does not hold
i.e. minority groups

Majority group Minority group

34
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How to train a biased classifier?

Setting 1: group labels available for validation set

Just Train Twice: Improving Group Robustness

Examples:
without Training Group Information

e heavy regularization
e . g . Vi a ea rly Sto p p i n g Evan Zheran Liu"! Behzad Haghgoo*! Annie S. Chen”! Aditi Raghunathan' Pang Wei Koh !
Shiori Sagawa ' Percy Liang! Chelsea Finn'

Learning from Failure:
Training Debiased Classifier from Biased Classifier

e custom loss function
e-g- amplify “eaSy” examples Junhyun Nam* Hyuntak Cha? Sungsoo Ahn' Jaeho Lee!

{junhyun.nam, hyuntak.cha, sungsoo.ahn, jaeho-lee, jinwoos}@kaist.ac.kr

Jinwoo Shin'»?

Use worst-group validation error to select regularization strength, IW weights etc.
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How to train a biased classifier?

Setting 2: no group labels at all

Boosting worst-group accuracy

Exa m p I es. without any group annotations

e identify groups from training AND validation data
with ensemble of biased classifiers to reduce noise e B R Cmaner Seeeg  *41

ETH Zurich, Switzerland
{vbardenha,tifreaa,fan.yang}Qethz.ch

Group Robust Classification

e post-hoc logit adjustment using P (Y|mesed) Without Any Group Information

as an estimate of P (Y| A)

Christos Tsirigotis* Joao Monteiro Pau Rodriguez
Université de Montréal, Mila, ServiceNow Research  ServiceNow Research Apple MLR

David Vazquez Aaron Courvillet
ServiceNow Research Université de Montréal, Mila, CIFAR CAI Chair
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How to train a biased classifier?

Setting 2: no group labels at all

Examples:
e identify groups from training AND validation data
with ensemble of biased classifiers to reduce noise

e post-hoc logit adjustment using P (Y|Ybia36d)
as an estimate of P (Y| A)

Boosting worst-group accuracy
without any group annotations

Vincent Bardenhagen; Alexandru Tifrea; Fanny Yang
Department of Computer Science
ETH Zurich, Switzerland
{vbardenha,tifreaa,fan.yang}Qethz.ch

Group Robust Classification
Without Any Group Information

Christos Tsirigotis* Joao Monteiro Pau Rodriguez
Université de Montréal, Mila, ServiceNow Research  ServiceNow Research Apple MLR

David Vazquez Aaron Courvillet
ServiceNow Research Université de Montréal, Mila, CIFAR CAI Chair

Corrupt-MNIST Waterbirds CelebA Color MNIST Adult

Poverty
Tuning Avg Wg Avg Wg Avg Wg Avg Wg Avg Wg Avg Wg
No group ERM 99.6 71.2 97.9 74.9 943 60.7 99.8 82.6 80.1 41.6 87.6 55.6
labels Ours I 99.0 96.5 97.5 78.5 88.0 78.9 99.3 96.6 81.2 68.0 86.3 50.0'
Val group ERM WG Q0 & 70 R Q76 367 03 1 7R Q07 [4.4 R0 Gl 2 {77 515
labels JTIT I 99.1 91.3 93.3 86.7 88.0 81.1 98.3 94.8 77.8 63.3 64.5 60.5
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Similar average and worst-group
accuracy for two-stage methods:

e with no group labels

e with validation group labels
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The opposite of what robust
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Can we get both fairness and robustness to outliers?
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Recall: Two-stage methods
1) use biased classifier to identify error set
2) train fair classifier via IW / GDRO

: The opposite of what robust

statistics literature recommends!
e.g. can amplify outliers, noisy samples etc

Can we get both fairness and robustness to outliers?

Robust Mixture Learning when Outliers Overwhelm Small Groups

Daniil Dmitriev!, Rares-Darius Buhai'’, Stefan Tiegel!, Alexander Wolters?, Gleb Novikov’, Amartya
Sanyal®, David Steurer', and Fanny Yang'

37

Clustering algorithm that is
e applicable even for |Outliers| » |Minority group|

e computationally efficient
e information-theoretically optimal



DRO mitigations in the presence of outliers

Recall: Two-stage methods
1) use biased classifier to identify error set

: The opposite of what robust
2) train fair classifier via IW / GDRO

statistics literature recommends!
e.g. can amplify outliers, noisy samples etc

Can we get both fairness and robustness to outliers?

Clustering algorithm that is

e applicable even for |Outliers| » |Minority group|
Daniil Dmitriev!, Rares-Darius Buhai'’, Stefan Tiegel!, Alexander Wolters?, Gleb Novikov’, Amartya . ..
Sanyal*, David Steurer', and Fanny Yang' e computationally efficient

Robust Mixture Learning when Outliers Overwhelm Small Groups

e information-theoretically optimal

Fairness without Demographics through
Adversarially Reweighted Learning

Idea: only upweight samples in the error set that are
Precth Lahati Alex Bute, Jiin Chen, Kang Lee,Favien Pros, computationally identifiable using simple function

plahoti@mpi-inf.mpg.de Nithum Thain, Xuezhi Wang, Ed H. Chi
Max Planck Institute for Informatics Google Research C I a S S ‘F

37
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Low-label regime

Research questions

1) How to acquire the labeled data?

unlabeled data labeled data
2) How to learn from both labeled
\ N s and unlabeled data?
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Low-label regime

Research questions

1) How to acquire the labeled data?  active learning

unlabeled data labeled data
R 2) How to learn from both labeled semi-supervised
\ N s and unlabeled data? learning
o Fairness problems

e class imbalance

e group imbalance
(but potentially balanced classes)
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Uncertainty sampling-based active learning

Uncertainty sampling
“binary search to find decision boundary”

decision
boundary

—HKOHOOOODE—IOCHOO
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Uncertainty sampling
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Uncertainty sampling-based active learning

uncertainty-based AL

0.94 ) . ‘\
Uncertainty sampling 0.92 -
“binary search to find decision boundary” 090 e sampling
=
0.88 ~@— BASE (ours) and other AL
decision doss| [/ /./'/ o CoreseteAr
< # > —— Margin Sampler
boundary 0.84 ' —— Confidence gampler
// —4— BADGE
1 —A— Random Sampler
0.82 ‘ —»— Balancing Sa;pler
a Ea e .a e ea e 0.80 —-—=- Balanced Random Sampler

0 2k 5k 7k 10k 12k 15k 17k 20k
Exhausted Budget

CIFAR10 dataset

U-AL is more label efficient than
uniform sampling or other AL

Image source: https://arxiv.org/abs/2111.12880 40
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Standard active learning can improve fairness

Class-imbalanced classification

e true decision boundary

1 1
-4 -2 0 2 4

Focus on linear classification

41

Learning on the Border:
Active Learning in Imbalanced Data Classification

Seyda Ertekin', Jian Huang?, Léon Bottou?, C. Lee Giles**
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Standard active learning can improve fairness

Class-imbalanced classification

Learning on the Border:
Active Learning in Imbalanced Data Classification

true decision boundary best avg-case classifier

\ Seyda Ertekin!, Jian Huang?, Léon Bottou®, C. Lee Giles>*
) ) /

Decision boundary of biased
classifier is closer to minority class

sfe®

° 03 o .‘..3033.0.

-1 ‘ete o'ci; ?:’:3'@(3 o “oe seRe o0 0
) l'g ( S ..% ool

/ best avg-case classifier
- B .~ true decision boundary
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Class-imbalanced classification
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P true decision boundary
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Standard active learning can improve fairness

Class-imbalanced classification

true decision boundary best avg-case classifier

. % best avg-case classifier
- B .~ true decision boundary

-4 -2 0 2 4

Focus on linear classification

41

Learning on the Border:

Active Learning in Imbalanced Data Classification

Seyda Ertekin', Jian Huang?, Léon Bottou?, C. Lee Giles>!

L

Decision boundary of biased
classifier is closer to minority class

U-AL tends to select more minority
points to be labeled

U-AL collects a more
balanced labeled set




Standard active learning can improve fairness
Class-imbalanced classification

U-AL also mitigates class imbalance in non-linear classification!

Active Learning at the ImageNet Scale

Zeyad Ali Sami Emam*#
zeyad@umd.edu

Hong-Min Chu*f

hmchu@umd. edu

Micah Goldblum®
goldblum@nyu.edu

Ping-Yeh Chiang*
pchiang@umd.edu

Richard Leapman?

leapmanr@mail.nih.gov tomg@umd. edu

Tom Goldstein®

Wojciech Czaja’
wojtek@umd. edu

Algorithm Selection for Deep Active Learning with

Imbalanced Datasets
Jifan Zhang Shuai Shao Saurabh Verma
University of Wisconsin - Madison Meta Inc. Meta Inc.

Madison, WI 53715
jifan@es.wisc.edu

Menlo Park, CA 94025
sshao@meta.com

Menlo Park, CA 94025
saurabh08@meta.com

Robert Nowak
University of Wisconsin - Madison
Madison, WI 53715
rdnowak@wisc.edu

Worst-class acc.

0.7

0.6

05

04

03

Alexandru Tifrea*

John Hill*

Fanny Yang

Improving class and group imbalanced classification
with uncertainty-based active learning

Department of Computer Science, ETH Zurich

Department of Computer Science, Georgia Institute of Technology

Department of Computer Science, ETH Zurich

TIFREAAQINF.ETHZ.CH

JHILL326 @GATECH.EDU

FAN.YANGQINF.ETHZ.CH

imbalanced CIFAR10
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O o7
@ o
/)]
/2]
©
Q
A
. B 03
P orese!
U-AL+ERM g 02
—— PL+RW 0.1
—— PL+ERM

0.0

labeled samples
42
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Worst-group acc.

Standard active learning can improve fairness
Group-imbalanced classification
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Improving class and group imbalanced classification
with uncertainty-based active learning

Alexandru Tifrea* TIFREAAQINF.ETHZ.CH
Department of Computer Science, ETH Zurich

John Hill* JHILL326@QGATECH.EDU
Department of Computer Science, Georgia Institute of Technology

Fanny Yang FAN.YANG@INF.ETHZ.CH
Department of Computer Science, ETH Zurich

CAN ACTIVE LEARNING PREEMPTIVELY MITIGATE
FAIRNESS ISSUES?

Frédéric Branchaud-Charron; Parmida Atighehchian; Pau Rodriguez,

Grace Abuhamad, Alexandre Lacoste

ServiceNow

{fr.branchaud-charron, parmida.atighehchian}@servicenow.com
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Department of Computer Science, ETH Zurich
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Worst-group acc.

Standard active learning can improve fairness
Group-imbalanced classification

Improving class and group imbalanced classification
CelebA a with uncertainty-based active learning
0.850 =] Blonde Male Sample Percentage
improvement 9 0.025 Alexandru Tifrea* TIFREAAQINF.ETHZ.CH

0.825 (@] Department of Computer Science, ETH Zurich

thanks to U-AL E John Hill* JHILL326@QGATECH.EDU
.0.800 [e) 0.020 Department of Computer Science, Georgia Institute of Technology

e o
0.775 Y= - Fanny Yang FAN.YANG@INF.ETHZ.CH
S Improvement —— Coreset Department of Computer Science, ETH Zurich
-0.750 I oots thanks to U-AL U-AL
— PL+RW
0.725 ks —— PL+ERM
Coeset € o010 CAN ACTIVE LEARNING PREEMPTIVELY MITIGATE
0.700 =
U-AL+ERM O FAIRNESS ISSUES?
0675 —— PL+RW 'g
0.650 LEERY 8— 0.005 Frédéric Branchaud-Charron; Parmida Atighehchian; Pau Rodriguez,
1000 2000 3000 4000 5000 DL_ 1000 2000 3000 4000 5000 g}erre:lgcee%l:‘;hamad, Alexandre Lacoste
{fr.branchaud-charron, parmida.atighehchian}@servicenow.com
labeled samples labeled samples
Takeaways

e no explicit group information used anywhere during sampling/learning!
e not all AL strategies help (e.g. coreset sampling)
e U-AL+ERM can be better than passive learning + reweighting

43



Using group labels for active learning

Acquire labels for samples

selected according to:

1
Pyr(X) ~ §>\dz‘ff(X)

+

1
—A air
2 f (X)

Fair Active Learning in Low-Data Regimes

Romain Camilleri, Andrew Wagenmaker, Jamie Morgenstern, Lalit Jain, Kevin Jamieson
University of Washington, Seattle, WA
{camilr,ajwagen, jamiemmt, jamieson}@cs.washington.edu,lalitj@uw.edu

F Adiff

Informativeness criterion:
Disagreement region of ensemble

y=0 .
. .'-'y=+1

Fairness criterion:
Uniform mass on all groups




Limitations of uncertainty-based AL

Test error

0.5

0.4

0.3

0.2

0.1

passive learning

Err[U-AL] > Err[PL]

epsilon [d=2000] real-sim [d=20958] christine [d=1636]
0.4\ 0.6
\A 0.5
0.3 \
0.4
\‘-‘\ 0.2
) 0.3
\ 0.1 Vel 0.2 el Wy ey
10 2 5 100 2 5 1000 10 2 5 100 2 5 1000 2 10 2 5 100 2 5 1000
Query budget n, Query budget n, Query budget n,

U-AL can be on par with or
even worse than passive learning

e For high-dimensional data

e [or data with lots of label noise
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Margin-based sampling in high dimensions:
When being active is less efficient than staying passive

Alexandru Tifrea™! Jacob Clarysse”' Fanny Yang'

On the Relationship between Data Efficiency and Error
for Uncertainty Sampling

Stephen Mussmann ' Percy Liang '




Summary

A few examples of fair learning algorithms that
(1) Have fewer data requirements than standard fairness mitigations
(2) Leverage unlabeled data to improve fairness

Open questions

e |mpact of class/group label noise
e Interplay between fairness and other evaluation metrics, beyond accuracy

|:> coming up in the next part
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Privacy in Machine Learning

Privacy can mean a lot of things but two things are important to define:
e \What is the private entity ?

e What can the privacy adversary observe ?
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e Differential Privacy prevents leakage of training data from the trained model

e Multi-Party Computation allows multiple data holders to collaboratively
execute a computation without learn too much about other parties’ data
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“Data is a precious thing and will last
longer than the systems themselves”

Sir Tim-Berners Lee



US Census and Privacy

Vulnerability of sparse data

51

WHOSE 2010 CENSUS RESPONSES CAN BE RECONSTRUCTED WITH
CERTAINTY?
Aloni Cohen and JN Matthews
University of Chicago
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e 2010 US Census privacy protections were
vulnerable to reconstruction attacks.

FrozenPop

® Total share frozen: TotalPop
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affected: 80% of NHPI (Native Hawaiian
& Pacific Islander) responses in NC were
fully reconstructed. 2| i i

0.0

0.6

Share of Population Frozen

0.4

91404 46046
414030 206199

WHITE BLACK AMIN ASIAN NHPI OTHER  2MORE

51



US Census and Privacy

Vulnerability of sparse data

e 2010 US Census privacy protections were

vulnerable to reconstruction attacks.

e Some groups are disproportionately
affected:

responses in NC were

fully reconstructed.

e Similar inferences were also shown about
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Vulnerability of sparse data

e 2010 US Census privacy protections were

vulnerable to reconstruction attacks.

e Some groups are disproportionately
affected:

responses in NC were

fully reconstructed.

e Similar inferences were also shown about

WHOSE 2010 CENSUS RESPONSES CAN BE RECONSTRUCTED WITH
CERTAINTY?
Aloni Cohen and JN Matthews
University of Chicago
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® Total share frozen: 72200
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age and more accurate in smaller “blocks”

Takeaway: Often privacy violatiogs are stronger in smaller communities.
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- Informal Theorem: If you try to answer too many questions ]

too accurately about a dataset, there’s a clever way for an
attacker to piece together (almost) the entire original data.
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Cost of Privacy

Informal Theorem: If you try to answer too many questions i

| too accurately about a dataset, there’s a clever way for an
attacker to piece together (almost) the entire original data.

If the original dataset’s privacy is to be protected, some accuracy needs
to be sacrificed. The study of DP tries to control this trade-off.
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Differential Privacy Alice || EEE Bob | NN
- Differential Privacy noises the algorithm’s output
to limit the exposure of any single data point
v
* A Differentially Private ML algorithm produces
similar models irrespective of whether Alice’s data
is in the dataset or Bob’s

The replacement of a single data record minimally impacts the trained model
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Differential Privacy (Defn.)

Consider any
- Neighbouring datasets S1 and S9
» Output set ()

Then Algorithm is (e, §)-DP if

e

Alice
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Differential Privacy and data quality

One simple formula for implementing DP :

e Compute the algorithm’s sensitivity: how much can the output
change if the worst data point in the worst input dataset changes

® Add noise proportional to that change magnitude

Today, we will look at two ways in which data quality affects the
performance of Differentially Private Algorithms

e Good data requires less added noise for the same level of privacy

e Some parts of data domain incurs disproportionately higher loss due
to the Differential privacy than others
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Naive DP Mean estimation 4

e DP must protect against worst-case changges: - RN o
7
e A naive DP estimator clips data to a batl of radius R ® \
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Naive DP Mean estimation 4

e DP must protect against worst-case changges: - ~
/
e A naive DP estimator clips data to a batl of radius R LN

L . /
e Noise is calibrated to It ; ~

Ve
o
error scales as R2 dz /

/7
10— pl < '

’I’LG

\ \

e Heavy tails or outliers force R to\lQe large. <

¢ Worst-case sensitivity leads to hiBI\noise and error. /
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e Related task is estimating the geometric median: solving the following

e Solving this problem with DP-SGD yields DP cost R\/E
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HSU24 proposes an algorithm which yields DP cost
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DP-PCA: Statistically Optimal and
| Lower bound for any data \ Differentially Private PCA

Xiyang Liu * Weihao Kong Prateek Jain ! Sewoong Oh §

Theorem 5.4 (Lower bound without A

that map n i.i.d. samples to an estimate © € R%. A set of distributions satisfying Assumptions A.1-

A.3 with M = O(d + \/ne/d), V = O(d) and v = O(1) is denoted by P. For d > 2, there ezists a

universal constant C > 0 such that

13
vEM, PeP En ( )

inf sup Eg.p- [sin(#(S),v;)] > Ckmin dAlog((1— 9 /6),1) .
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universal constant C' > 0 such that
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that map n 1.i.d. samples to an estimate © € RY. A set of Gaussian distributions with (A1, A2) as the
first and second eigenvalues of the covariance matriz is denoted by Py, »,). There ezists a universal
constant C > 0 such that

d d\
inf sup  Eg.p» [sin(9(S),v1)] > Cmi -4 — —. 1] . 12
B, 2P Esupn in(@(S)m)] > Cmin (n (\/n m) Ve ) (12

inf sup Eg. p- [sin(9(S),v;)] > Ckmin
vEM, PeP

68



DP Principal Component Analysis

DP-PCA: Statistically Optimal and
| Lower bound for any data \ Differentially Private PCA

Xiyang Liu * Weihao Kong Prateek Jain ! Sewoong Oh §

Theorem 5.4 (Lower bound without A e

that map n 1.i.d. samples to an estimate v € Rd A set of dzstnbutwns satlsfymg Assumptions A.1-

A.3 with M = O(d + \/ne/d), V = O(d) and v = O(1) is denoted by P. For d > 2, there ezists a
universal constant C > 0 such that
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inf sup Eg. p- [sin(9(S),v;)] > Ckmin
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Theorem 5.4 (Lower bound without A v - v ap—
that map n i.i.d. samples to an estimate © € R%. A set of distributions satisfying Assumptions A.1-

v = O(1) is denoted by P. For d > 2, there ezists a
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e Similar results known about other
problems including PCA.
e Key takeaway:

0 ' reroTEy T
P”Vacy guarante_ed .Ijor ALL datasets' | A set of Gaussian distributions with (A1, A\2) as the
o When data quality is hlgh, atriz is denoted by Py, »,).- There ezists a universal

(12)

utility is better.
i sup Eg.p» [smn(v(S),v1)] = Cmin (rz (\/g
TEM: PEP(x, Ay) n En

Lower bound for sub-gaussian
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Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi,...,zn}, loss function L£(f) =
+ 3, L£(0,x:). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6, randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € L, compute g:(z;) < Vg, L(0,x;)
Clip gradient
g:(x:) < gi(z:)/ max (1’ IIgt(gi)llz)
Add noise
g < 1 (3, &(x:) + N(O, 02021))
Descent
Or+1 < 0y — 84
Output 0r and compute the overall privacy cost (g,4)
using a privacy accounting method.
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4+ 4+ 0 3 5
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Other approaches to leverage unlabelled data

m DP-SGD @ DP-PCA m jJL mm AdaDPS [ GEP  m OURSJ
24

45
60

Test Accuracy

CIFAR-10 CIFAR-100 DermNet Pneumonia

e GEP works in the gradient space
e AdaDPS use public data for gradient pre-conditioning
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Adversarial training

Adversarial Training replaces (or augments) clean data
with corresponding adversarial examples during SGD.

Naturally, complex models can fit the augmented data better.

Robust overfitting is when train robust error
decreases but test robust error increases.
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e One of explanations given for Robust overfitting is
that adversarial training implicitly adds label noise.
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e (learly, more data helps to avoid robust overfitting
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Improving Robust generalisation

With unlabelled data
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Improving Robust generalisation

Wlth u n Ia bel Ied d ata Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

Method Robust Standard

Test Acc. Test Acc. Aditi Raghunathan*! Sang Michael Xie "' Fanny Yang? John C.Duchi! Percy Liang!
Standard Training 0.8% 95.2% _
PG-AT (Madry et al., 2018) | 45.8% 87.3% }Su‘l’;;';lvl};‘ed
TRADES (Zhang et al., 55.4% 84.0%
2019)
Standard Self-Training 0.3% 96.4%
Robust Consistency Training | 56.5% 83.2% Semisupervised
(Carmon et al., 2019) with same
RST + PG-AT (this paper) | 58.5% 91.89 | unlabeled data
RST + TRADES (this 63.1% 89.7%
paper)
(Carmon et al., 2019)
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o Hard to collect quality data uniformly.

o Data sources evolve over time

® Robustness to distribution shift requires preserving accuracy when the
distribution shifts

e |mpossible to protect against arbitrary shifts

e Goal is to allow for a graceful degradation with increasing shift
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Accuracy-on-the-line phenomenon:
ID and OOD accuracy are positively
correlated.

Indicates that improving ID accuracy
also improves OOD accuracy.

Holds for a wide variety of models
and datasets
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e Inject and fit random label noise in the training data
e Presence of multiple “nuisance features” i.e. irrelevant features
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Out-of-distribution detection



What if we cannot predict reliably
outside of the training distribution?
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Impossibility result

Achievable distributional robustness when the robust risk is only
partially identified
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*Department of Mathematics, Imperial College London
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Achievable distributional robustness when the robust risk is only
] mgm part1ally identiﬁed
I m p O s S I b I I Ity re s u It Julia Kostin', Nicola Gnecco*?, and Fanny Yang!
for distribution shifts L o s A

Mean shifts during test time assumed to lie in Otest = {Btest: OtestOfest <|¥Mseen H|Y Munseen |}

shift strengths
Test time shifts assumptions

Covariance with range in span of range(Mgeen) © span {0, }eek]
Projection matrix onto range(Mseen) L span {0, }ec (k)
_ _ Corollary
Main theoretical result o Existing OOD generalization
Information-theoretic lower algorithms (e.g. anchor regression) are optimal.

° Anchor regression is not better

bound on robust risk. :
than ordinary least squares.
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What if we cannot predict reliably
outside of the training distribution?



What if we cannot predict reliably
outside of the training distribution?

A: Flag out-of-domain samples
and abstain.



Traditional OOD detection methods

Unsupervised OOD i.e. only observe in-distribution samples.

Examples:
Density estimation

e.g. in NN embedding space

A

Predictive uncertainty

e.g. ensembles

® 0

Figure sources: https://link.springer.com/article/10.1007/s10044-021-00998-6, https://arxiv.org/abs/2012.05825
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Limitations of unsupervised OOD detection

Challenge #1: Unsupervised OOD detection can be ill-defined

OooD
threshold

Perfect Density Models Cannot Guarantee Anomaly Detection

Charline Le Lan ** and Laurent Dinh 2

! Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
Montreal H3B 2Y5, CA

. P(_Q‘)

B
A
A
£ S \
N = B
T 1 %

invertible cha
representation

outliers!

101



Limitations of unsupervised OOD detection

Challenge #2: finite samples + curse of dimensionality

Seen during training
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Limitations of unsupervised OOD detection

Challenge #2: finite samples + curse of dimensionality

Unseen during training

Seen during training

Far OOD (“easy”) Near OOD (“hard”)
i.e. OOD = new dataset i.e. OOD = new classes

Bacteria Healthy Viral
pneumonia pneumonia
,——————————

0.6

0.59
Ee 0.53 LY
0.5
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Exploring the Limits of Out-of-Distribution Detection

Diverse pre-training data

Stanislav Fort* Jie Ren* Balaji Lakshminarayanan
Stanford University Google Research, Brain Team  Google Research, Brain Team
sforti@stanford.edu Jjjren@google.com balajiln@google.com

Pre-train on ImageNet21k
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Exploring the Limits of Out-of-Distribution Detection

Diverse pre-training data

Stanislav Fort* Jie Ren* Balaji Lakshminarayanan
Stanford University Google Research, Brain Team  Google Research, Brain Team
sforti@stanford.edu Jjjren@google.com balajiln@google.com

on CIFAR10 CIFAR100

- 2 Qo >
ARYRs EHa=aw

AUROC
Unsup. method: 0.80
Pretrained method: 0.97

on remaining
5-class FashionMNIST FashionMNIST classes

label 1 label 4 label 5 label 6 label 9 label 0 label 2 label 3 label 7 label 8

MAENSE NLAD™

Unsup. method: 0.82
s Pretrained method: 0.87




Using proxy OOD data

Natural proxy OOD data

DEEP ANOMALY DETECTION WITH
OUTLIER EXPOSURE
Dan Hendrycks Mantas Mazeik Th Dietterich

University of California, Berkeley University of Chicago Oregon State University
hendrycks@berkeley.edu mantas@ttic.edu tgd@oregonstate.edu

Known outliers: Tinylmages dataset
(superset of CIFAR10/100)

@ g
7 P e
=i PP

p
£l ,t‘
(a) Original
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Synthetic proxy OOD data

CSI: Novelty Detection via Contrastive Learning
on Distributionally Shifted Instances

Jihoon Tack*t, Sangwoo Mo**, Jongheon Jeong?, Jinwoo Shin'*
fGraduate School of AL, KAIST
School of Electrical Engineering, KAIST
=

Known outliers: synthetic image
transformations

(b) Cutout (c) Sobel (d) Noise (e) Blur (f) Perm

(g) Rotate



DEEP ANOMALY DETECTION WITH
OUTLIER EXPOSURE

Using proxy OOD data |...... s e

University of California, Berkeley University of Chicago Oregon State University
hendrycks@berkeley.edu mantas@ttic.edu tgd@oregonstate.edu

remaining

Known outliers: Tinylmages dataset 5-class CIFAR10 CIFAR10 classes
(superset of CIFAR10/100) —
P ’ &3

IV » IIHE& —

AUROC
Outlier exposure method: 0.82

remaining
5-class FashionMNIST FashionMNIST classes

11 label 4 label 5 label 6 label 0 label 2 label 3 label 7 label 8

INENS L

AUROC
Outlier exposure method: 0.66
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Semi-supervised novelty detection using

Se m i =-SU pe rVi Sed O O D d et e cti on ensembles with regularized disagreement

Alexandru Tifrea, Eric Stavarache, Fanny Yang

Leve ra g i n g u n I a be I ed d ata Department of Computer Science

ETH Zurich, Switzerland

OsetofIDdata 3% set of OOD data = model | ensemble disagrees model/ensemble prediction
@@ |abeled set S unlabeled set U model Il 8 identified as OOD in U & predictions in U

......
- .~

SSND setting
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Semi-supervised novelty detection using

Se m i =-SU pe rVi Sed O O D d et e cti on ensembles with regularized disagreement

Alexandru Tifrea, Eric Stavarache, Fanny Yang

Leve ra g i n g u n I a be I ed d ata Department of Computer Science

ETH Zurich, Switzerland

OsetofIDdata 3% set of OOD data = model | ensemble disagrees model/ensemble prediction
@@ [abeled set S unlabeled set U model Il 8 identified as OOD in U & predictions in U

SSND setting Individual models Ensemble predictions

sample x is flagged as OQOD if “disagreement” > threshold
e.g. average pairwise TV distance between predictive distributions of the models in ensemble
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Semi-supervised novelty detection using

Se m i =-SU pe rVi Sed O O D d et e cti on ensembles with regularized disagreement

Alexandru Tifrea, Eric Stavarache, Fanny Yang

Key i n g red ient: Appro pri ate reg u Ia rizati on Department of Computer Science

ETH Zurich, Switzerland

Right amount of

label noise Too much diversity diversity

Idea: regularization with strength chosen using ID validation set
i.e. control FPR (ID samples incorrectly flagged as OOD)
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Semi-supervised novelty detection using
ensembles with regularized disagreement

Semi-supervised OOD detection o
Performance on near OOD data A bt ot Commatar Seionen (18

ETH Zurich, Switzerland

Unseen during training

Seen during training

pneumonia Fal’ OOD (“easy”) Neal’ OOD (“hard”)
T i.e. OOD = new dataset i.e. OOD = new classes

1
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Semi-supervised novelty detection using
ensembles with regularized disagreement

Semi-supervised OOD detection o
Performance on near OOD data A tment of Comtar Scionee, 18

ETH Zurich, Switzerland
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Semi-supervised novelty detection using

- = = bles with regularized disagreement
Limitations of o

Alexandru Tifrea, Eric Stavarache, Fanny Yang

semi-supervised OOD detection

ETH Zurich, Switzerland

Challenge #1: not suitable for real-time applications
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Semi-supervised novelty detection using
ensembles with regularized disagreement

Limitations of o
semi-supervised OOD detection | " et ™

Challenge #1: not suitable for real-time applications

Challenge #2: not suitable for anomaly detection i.e. singleton outliers
AUROC

5000
2000
1000

200

100

Unlabeled set size

40
0.05 0.1 0.25 0.5 0.75 0.9
Proportion of OOD in the unlabeled set
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Outlook and future directions



Summary: Trustworthy ML under imperfect data

Figure sources: https://arxiv.org/pdf/1912.02292 111
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Summary: Trustworthy ML under imperfect data

| —— 0% label noise
0.4 —— 5% label noise
—— 10% label noise

—— 15% label noise
20% label noise

If accuracy alone is the goal: 503
benign overfitting of label noise =02 \N\M
0.1

1 10 20 30 40 50 60 64
ResNet18 Width Parameter

If we care about trustworthiness:

This tutorial: Several examples of trustworthy learning algorithms that work well under
label noise, missing data etc.

Open questions
e What other data-related limitations do existing trustworthy algorithms suffer from?

e How to improve trustworthiness in other difficult problem settings?

Figure sources: https://arxiv.org/pdf/1912.02292 111
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Summary: Trustworthy ML and unlabeled data

If accuracy alone is the goal:

SSL cannot be simultaneously better than

both unsupervised and supervised learning

112

Can semi-supervised learning use all the data
effectively? A lower bound perspective

Alexandru Tifrea™ Gizem Yiice*
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Open questions

e How fundamental are the improvements to trustworthiness due to unlabeled data?

e \What other kinds of (potentially noisy) side information can be used to improve

trustworthiness?




Thank you!



