ETHZURICH

DIFFERENTIALLY PRIVATE LEARNING

An algorithm \mathcal{A} is said to be (ϵ, δ) -differentially private (DP) if

 $\mathbb{P}\left[\mathcal{A}(S_1) \in Q\right] \le \exp(\epsilon)\mathbb{P}\left[\mathcal{A}(S_2) \in Q\right] + \delta$

for all **neighbouring datasets** S_1, S_2 and **output sets** Q.

Existing Results: Sample complexity of DP algorithms are **dimension-dependent** in the worst case.

In **Semi-Private learning** [1], the learner accesses

- Private Labelled dataset,
- Public Unlabelled dataset from nearby distribution

This work: Design Semi-Private learner for linear half-spaces that

- 1. Is **Computationally Efficient**
- 2. Admits **Dimension Independent** sample complexity
- 3. Performs well in **Challenging Practical Applications**

THEORETICAL RESULTS

We exploit two properties of data distribution μ (covariance Σ)

- (A1) Large Margin: μ admits a classifier w^* with margin γ
- (A2) Low Rank: Large Proj. of w^* on top-k components of Σ .

PILLAR 1 Unlabelled dataset ($\mathbf{X}_U \in$), Labelled dataset (\mathbf{X}_L, Y_L), k

- 1: $\widehat{\Sigma} \leftarrow \sum_{\mathbf{x} \in S_U} \mathbf{x} \mathbf{x}^\top$, $\mathbf{A}_k \leftarrow \text{top-}k$ principal components of $\widehat{\Sigma}$. 2: $\mathbf{X}_{L}^{\mathrm{Proj}} \leftarrow \mathrm{Project} \, \mathbf{X}_{\mathbf{L}} \text{ on } \mathbf{A}_{k}.$
- 3: $\hat{\mathbf{w}}_{\epsilon,\delta} \leftarrow \text{Run Noisy-SGD on } (\mathbf{X}_L^{\text{Proj}}, Y_L) \text{ with privacy parameters } \epsilon, \delta$

Guarantees on $\hat{\mathbf{w}}_{\epsilon,\delta}$

Privacy: $\hat{\mathbf{w}}_{\epsilon,\delta}$ is (ϵ, δ) -DP.

• Accuracy: For $\alpha, \beta \ge 0$, $|\mathbf{X}_U| = O\left(\frac{1}{\gamma^2}\right)$ and $|\mathbf{X}_L| = \widetilde{O}\left(\frac{\sqrt{k}}{\alpha\epsilon\gamma}\right)$,

 $\mathbb{P}\left[\mathbf{Error}\left(\mathbf{\hat{w}}_{\epsilon,\delta}\right) \leq \alpha\right] \geq 1 - \beta$

PILLAR: How to make semi private learning effective

Francesco Pinto^{*1}, Yaxi Hu^{*1}, Fanny Yang¹, Amartya Sanyal^{1,2} ¹ETH Zurich, ²Max Planck Institute for Intelligent Systems

ION SHIFT				QR CODE FOR PAPE				
m different distributions.							[1] Alon	ı, e
ng CIFAR-10v1 for public						H I F====	data." N	eu
ta.					100		[2] Lê N large-ma	Jgu arg
CIFAR100			1.1				Tia	
	SL	BYOL			ЭŅ,		informa	tion
	27 47	19 89			117	9 3 7.	[4] Yu, I	Эa,
	27.18	19.21					bedding	; pe

