Do you pay for Privacy in Online learning?

Conference On Learning Theory 2022

Giorgia Ramponi, Amartya Sanyal

ETH AI Center, Zurich, Switzerland

• Let X be the instance space

- Let X be the instance space
- At each time step *t*, the learner

- Let X be the instance space
- At each time step t, the learner
 - receives an unlabelled example $x_t \in X$,

- Let X be the instance space
- At each time step t, the learner
 - receives an unlabelled example $x_t \in X$,
 - predicts a label \hat{y}_t for x_t , and then

- Let X be the instance space
- At each time step t, the learner
 - receives an unlabelled example $x_t \in X$,
 - predicts a label \hat{y}_t for x_t , and then
 - receives the true label y_t for x_t .

- Let X be the instance space
- At each time step t, the learner
 - receives an unlabelled example $x_t \in X$,
 - predicts a label \hat{y}_t for x_t , and then
 - receives the true label y_t for x_t .

The performance is measured by the number of mistakes:

$$\mathsf{Mistakes}\left(\mathcal{T}\right) := \sum_{t=1}^{\mathcal{T}} \left(\hat{y}_t \neq y_t \right).$$

- Let X be the instance space
- At each time step t, the learner
 - receives an unlabelled example $x_t \in X$,
 - predicts a label \hat{y}_t for x_t , and then
 - receives the true label y_t for x_t .

The performance is measured by the number of mistakes:

$$\mathsf{Mistakes}\left(\mathcal{T}\right) := \sum_{t=1}^{\mathcal{T}} \left(\hat{y}_t \neq y_t \right).$$

Realisable case: $\exists h^* \in \mathcal{H}$ such that $y_t = h^*(x_t)$ for all $t \leq T$.

A hypothesis class C on X is **online learnable** if there exists a learner L that makes at most $M < \infty$ mistakes on any sequence of length T labelled by any $h^* \in H$, for all T.

¹Nick Littlestone. "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm". In: *Machine learning* 2.4 (1988), pp. 285–318.

A hypothesis class C on X is **online learnable** if there exists a learner L that makes at most $M < \infty$ mistakes on any sequence of length T labelled by any $h^* \in \mathcal{H}$, for all T.

The combinatorial measure Littlestone dimension or $Ldim(\mathcal{H})$ exactly characterises online learnability of \mathcal{H}^1 .

¹Nick Littlestone. "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm". In: *Machine learning* 2.4 (1988), pp. 285–318.

A hypothesis class C on X is **online learnable** if there exists a learner L that makes at most $M < \infty$ mistakes on any sequence of length T labelled by any $h^* \in \mathcal{H}$, for all T.

The combinatorial measure Littlestone dimension or $Ldim(\mathcal{H})$ exactly characterises online learnability of \mathcal{H}^1 .

 $\operatorname{Ldim}\left(\mathcal{H}\right) \geq \operatorname{VC}\left(\mathcal{H}\right)$ (possibly arbitrarily larger)

¹Nick Littlestone. "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm". In: *Machine learning* 2.4 (1988), pp. 285–318.

A hypothesis class C on X is **online learnable** if there exists a learner L that makes at most $M < \infty$ mistakes on any sequence of length T labelled by any $h^* \in \mathcal{H}$, for all T.

The combinatorial measure Littlestone dimension or $Ldim(\mathcal{H})$ exactly characterises online learnability of \mathcal{H}^1 .

 $\operatorname{Ldim}(\mathcal{H}) \geq \operatorname{VC}(\mathcal{H})$ (possibly arbitrarily larger)

Thus, **online learnability** is harder than offline learnability.

¹Nick Littlestone. "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm". In: *Machine learning* 2.4 (1988), pp. 285–318.

Differential Privacy

An offline learning algorithm $\mathcal{A} : \mathcal{X} \to \mathcal{Y}$ is said to be (ϵ, δ) -differentially private if for any two datasets S_1, S_2 that differ in just one element:

 $\mathbb{P}\left[\mathcal{A}\left(\mathcal{S}_{1}
ight)\in \mathcal{Q}
ight]\leq e^{\epsilon}\mathbb{P}\left[\mathcal{A}\left(\mathcal{S}_{2}
ight)\in \mathcal{Q}
ight]+\delta$

²Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. "Differentially private online learning". In: *Conference on Learning Theory*. JMLR Workshop and Conference Proceedings. 2012, pp. 24–1. ³Naman Agarwal and Karan Singh. "The price of differential privacy for online learning". In: *International Conference on Machine Learning*. PMLR. 2017, pp. 32–40.

An offline learning algorithm $\mathcal{A} : \mathcal{X} \to \mathcal{Y}$ is said to be (ϵ, δ) -differentially private if for any two datasets S_1, S_2 that differ in just one element:

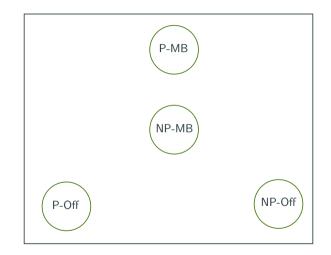
 $\mathbb{P}\left[\mathcal{A}\left(\mathcal{S}_{1}\right)\in\mathcal{Q}\right]\leq e^{\epsilon}\mathbb{P}\left[\mathcal{A}\left(\mathcal{S}_{2}\right)\in\mathcal{Q}\right]+\delta$

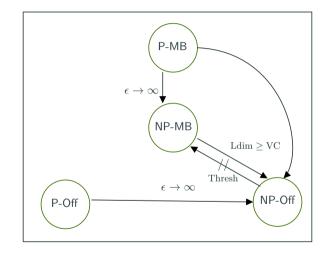
An online learning algorithm \mathcal{A} is $\{\epsilon, \delta\}$ -online differentially private²³ if for all $\mathcal{T} \in \mathbb{N}$, for any two sequences of \mathcal{T} points $S_{\mathcal{T}}, S'_{\mathcal{T}} \in (X \times \mathcal{Y})^{\mathcal{T}}$ that differ in one entry the following holds:

 $\mathbb{P}\left[\mathcal{A}(S_{\mathcal{T}}) \in Q\right] \leq e^{\epsilon} \mathbb{P}\left[\mathcal{A}(S_{\mathcal{T}}') \in Q\right] + \delta$

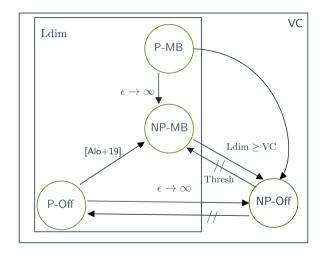
²Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. "Differentially private online learning". In: *Conference on Learning Theory*. JMLR Workshop and Conference Proceedings. 2012, pp. 24–1. ³Naman Agarwal and Karan Singh. "The price of differential privacy for online learning". In: *International Conference on Machine Learning*. PMLR. 2017, pp. 32–40.

- Non-Private Offline Learning (PAC) \rightarrow NP-Off
- Non-Private Online Learning (Online learnability) → NP-MB
- Private Offline Learning (PAC + Offline DP) \rightarrow P-Off
- Private Online Learning → P-MB

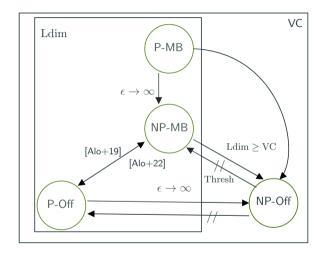




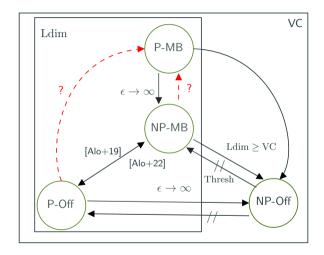
Learning hierarchy

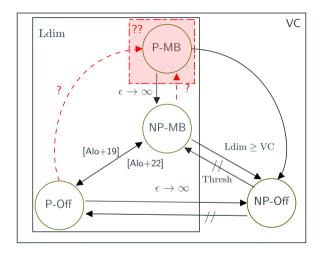


Learning hierarchy



Learning hierarchy





Theorem

There exists a hypothesis class such that for any sequence of points of length T labelled by $h^* \in H$,

- 1. (Online learnable) there exists an online algorithm A that does not make more than M mistakes on the sequence S_T for some $M < \infty$.
- 2. (Not privately online learnable) any (ϵ, δ) -differentially private online algorithm makes at least $M' \ge M + \alpha (\epsilon, \delta, T)$ mistakes,

where $\alpha : \mathbb{R} \times [0,1] \to \mathbb{N}$ is such that $\alpha(\epsilon, \delta, T) \gtrsim_{\delta} \frac{\sqrt{T}}{\epsilon}$.

Theorem

For any online-learnable hypothesis class \mathcal{H} , there exists a positive, monotonically decreasing function $\gamma = o(\sqrt{\cdot})$ such that for all $T \in \mathbb{N}$, and $\epsilon : \gamma(T) \gtrsim \epsilon \gtrsim \sqrt{T}$ there exists an (ϵ, δ) -differentially private online algorithm that makes at most $M < \infty$ mistakes for any sequence of points $S_T = \{(x_1, h^*(x_1)), \ldots, (x_T, h^*(x_T))\}$ of length T labelled by $h \in \mathcal{H}$.

Thanks for the attention!

• P-MB \implies NP-MB

● P-MB ⇒ NP-MB