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Interpolation & Adversarial Robustness

Two well known properties of neural networks
eInterpolation: Neural networks interpolate label noise, if trained long enough.[1]
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label corruption

o Adversarial Risk: Neural Networks known to suffer from high Adversarial Risk.
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Theorem 1: Uniform Label Noise & Robustness
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Remark: Required dataset size may be exponential in dimension!

Theorem 2: Tightness of result

Question: Is the required dataset size in Theorem 1 tight ?

Interpolating label noise in Neural Networks increases
vulnerability to off-manifold adversarial attacks
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Proof Idea: A poison is only harmful if it lies in a region of
high density, where uniform noise will sample from anyway.

Label Noise in Human Annotation
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Experiment using CIFAR10-N dataset
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Observation: Interpolating human label
noise is more benign than uniform noise.
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Reason: Human label noise
concentrates on the long-tail of data.
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