How unfair is private learning ?

Amartya Sanyal, Yaxi Hu, Fanny Yang

Amartya

Yaxi

Fanny

Privacy and Fairness

Privacy and Fairness

Privacy and Fairness are both desirable properties in machine learning applications.

Privacy and Fairness

Privacy and Fairness are both desirable properties in machine learning applications.

Prior Work has mostly looked at the intersection:

Privacy and Fairness

Privacy and Fairness are both desirable properties in machine learning applications.

Prior Work has mostly looked at the intersection:
Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.

Privacy and Fairness

Privacy and Fairness are both desirable properties in machine learning applications.

Prior Work has mostly looked at the intersection:
Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.
Fairness and Accuracy: Sagawa et. al. 2019, Du et al. 2021, Goel et. al. 2021.

Privacy and Fairness

Privacy and Fairness are both desirable properties in machine learning applications.

Prior Work has mostly looked at the intersection:
Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.
Fairness and Accuracy: Sagawa et. al. 2019, Du et al. 2021, Goel et. al. 2021.
THIS WORK: The interaction of Privacy and Fairness of nearly accurate algorithms.

Differential Privacy

Differential Privacy

Differential Privacy

Differential Privacy

Differential Privacy

Differential Privacy

Differential Privacy

Differential Privacy

Differential Privacy

Differential Privacy

(Un) Fairness (Accuracy Discrepancy)

(Un) Fairness (Accuracy Discrepancy)

(Un) Fairness (Accuracy Discrepancy)

Genre	Thrillers	Superhero	B\&W	Mimes	Silent	Puppet	Ostern
Proportion	40%	40%	4%	4%	4%	4%	4%

(Un) Fairness (Accuracy Discrepancy)

			Minority subpopulations				
Genre	Thrillers	Superhero	B\&W	Mimes	Silent	Puppet	Ostern
Proportion	40\%	40\%	4\%	4\%	4\%	4\%	4\%

(Un) Fairness (Accuracy Discrepancy)

(Un) Fairness (Accuracy Discrepancy)

ML Problem: Is the movie safe to watch for kids ?

(Un) Fairness (Accuracy Discrepancy)

ML Problem: Is the movie safe to watch for kids ?

Genre	Majority subpopulations		Minority subpopulations				
	Thrillers	Superhero	B\&W	Mimes	Silent	Puppet	Ostern
Proportion	40\%	40\%	4\%	4\%	4\%	4\%	4\%
Error	5\%	5\%	65\%	75\%	80\%	80\%	50\%

(Un) Fairness (Accuracy Discrepancy)

ML Problem: Is the movie safe to watch for kids ?

(Un) Fairness (Accuracy Discrepancy)

ML Problem: Is the movie safe to watch for kids ?

Total Error = 18\%

(Un) Fairness (Accuracy Discrepancy)

ML Problem: Is the movie safe to watch for kids ?

Total Error = 18\%
Accuracy Discrepancy = Minority Error - Total Error

(Un) Fairness (Accuracy Discrepancy)

ML Problem: Is the movie safe to watch for kids ?

Total Error $=18 \%$
Accuracy Discrepancy = 70-18=52\%

Example dataset

CelebA

Example dataset

CelebA

Example dataset

CelebA

40 binary attributes with each image

Example dataset

CelebA

40 binary attributes with each image

Example dataset

CelebA

40 binary attributes with each image

- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.

Bangs

Pointy Noise

Example dataset

CelebA

40 binary attributes with each image

- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,......, pointy noise.

Example dataset

CelebA

40 binary attributes with each image

- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,.......,pointy noise.
-
- Subpopulation 240: No eyeglasses, no bangs,..., no pointy nose.

Example dataset

40 binary attributes with each image

- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,.......,pointy noise.
-
- Subpopulation 20: No eyeglasses, no bangs,..., no pointy nose.

Example dataset

CelebA

40 binary attributes with each image

- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,......, pointy noise.
..
- Subpopulation 20: No eyeglasses, no bangs,..., no pointy nose.

Example dataset

CelebA

40 binary attributes with each image

- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,......, pointy noise.
..
- Subpopulation 20: No eyeglasses, no bangs,..., no pointy nose.

Privacy vs Fairness

CelebA

Privacy vs Fairness

CelebA

Privacy vs Fairness

CelebA

Privacy vs Fairness

CelebA

Privacy vs Fairness

CelebA

Privacy vs Fairness

CelebA

Privacy vs Fairness

CelebA

Is this trend systematic?

Is this trend systematic?

Main Contribution:

We prove this trend in a model-agnostic setting

Is this trend systematic?

Main Contribution:

We prove this trend in a model-agnostic setting for long-tailed distribution.

Is this trend systematic?

Main Contribution:

We prove this trend in a model-agnostic setting for long-tailed distribution.

Definitions of error and fairness

Definitions of error and fairness

- Error

Definitions of error and fairness

- Error

$$
\operatorname{err}(A, \Pi, F)=
$$

Definitions of error and fairness

- Error

Learning Algorithm

Definitions of error and fairness

- Error $\underset{\text { Learning Algorithm }}{\operatorname{err}}(A, \Pi, F)=$

Data Distribution

Definitions of error and fairness

Data Distribution

Definitions of error and fairness

Prior distribution over labelling functions $\subseteq Y^{X}$

Data Distribution

Definitions of error and fairness

Prior distribution over labelling functions $\subseteq Y^{X}$

Data Distribution

Definitions of error and fairness

Prior distribution over labelling functions $\subseteq Y^{X}$

Data Distribution

Definitions of error and fairness

Prior distribution over labelling functions $\subseteq Y^{X}$

Data Distribution

Definitions of error and fairness

Prior distribution over labelling functions $\subseteq Y^{X}$

Data Distribution

Definitions of error and fairness

Prior distribution over labelling functions $\subseteq Y^{X}$

Data Distribution

Definitions of error and fairness

- Accuracy Discrepancy

Definitions of error and fairness

- Accuracy Discrepancy

$$
\Gamma(A, \Pi, F)=\operatorname{err}_{\text {Minority }}(A, \Pi, F)-\operatorname{err}(A, \Pi, F)
$$

Definitions of error and fairness

- Accuracy Discrepancy

Marginalised over minority subpopulations

$$
\Gamma(A, \Pi, F)=\operatorname{err}_{\text {Minoritv }}(A, \Pi, F)-\operatorname{err}(A, \Pi, F)
$$

Privacy at the cost of fairness

Privacy at the cost of fairness

Consider any (ϵ, δ)-DP algorithm that obtains low error on a long-tailed distribution.

Privacy at the cost of fairness

Consider any (ϵ, δ)-DP algorithm that obtains low error on a long-tailed distribution.

[^0]
Privacy at the cost of fairness

Consider any (ϵ, δ)-DP algorithm that obtains low error on a long-tailed distribution.

N: \# Minority subpopulations
m : \# Training points

(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

- (Privacy) Increases with privacy parameter ϵ.

Privacy at the cost of fairness

Consider any (ϵ, δ)-DP algorithm that obtains low error on a long-tailed distribution.

$$
\text { (Minority Subpopulations) Let } \frac{\mathrm{N}}{m} \rightarrow c \text { as } N, m \rightarrow \infty .
$$

N : \# Minority subpopulations m : \# Training points
(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

- (Privacy) Increases with privacy parameter ϵ.

Privacy at the cost of fairness

Consider any (ϵ, δ)-DP algorithm that obtains low error on a long-tailed distribution.

$$
\text { (Minority Subpopulations) Let } \frac{\mathrm{N}}{m} \rightarrow c \text { as } N, m \rightarrow \infty \text {. }
$$

N : \# Minority subpopulations m : \# Training points
(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

- (Privacy) Increases with privacy parameter ϵ.
- (Long-tailed) Increases with (relative) \# of minority subpopulations c.

Privacy at the cost of fairness

Consider any (ϵ, δ)-DP algorithm that obtains low error on a long-tailed distribution.

$$
\text { (Minority Subpopulations) Let } \frac{\mathrm{N}}{m} \rightarrow c \text { as } N, m \rightarrow \infty . \quad \begin{aligned}
& \text { N: \# Minority subpopulations } \\
& \\
& m: \text { : Training points } \\
& \\
& F: \text { Label prior }
\end{aligned}
$$

(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

- (Privacy) Increases with privacy parameter ϵ.
- (Long-tailed) Increases with (relative) \# of minority subpopulations c.

Privacy at the cost of fairness

Consider any (ϵ, δ)-DP algorithm that obtains low error on a long-tailed distribution.

$$
\begin{aligned}
& \text { (Minority Subpopulations) Let } \frac{\mathrm{N}}{m} \rightarrow c \text { as } N, m \rightarrow \infty \text {. } \\
& \text { (Label prior Entropy) Define }\|F\|_{\infty}=\max _{x, y} \mathbb{P}_{f \sim F}[f(x)=y] \\
& N \text { : \# Minority subpopulations } \\
& m \text { : \# Training points } \\
& F \text { : Label prior }
\end{aligned}
$$

(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

- (Privacy) Increases with privacy parameter ϵ.
- (Long-tailed) Increases with (relative) \# of minority subpopulations c.

Privacy at the cost of fairness

Consider any (ϵ, δ)-DP algorithm that obtains low error on a long-tailed distribution.

$$
\begin{array}{ll}
\text { (Minority Subpopulations) Let } \frac{\mathrm{N}}{m} \rightarrow c \text { as } N, m \rightarrow \infty . & N: \text { : Minority subpopulations } \\
\text { (Label prior Entropy) Define }\|F\|_{\infty}=\max _{\substack{ \\
\text { (Laining points }}} \mathbb{P}_{f \sim F}[f(x)=y] & F: \text { Label prior }
\end{array}
$$

(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

- (Privacy) Increases with privacy parameter ϵ.
- (Long-tailed) Increases with (relative) \# of minority subpopulations c.
- (Label prior) Increases with entropy of the label prior.

Thank you

[^0]: (Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

 - (Privacy) Increases with privacy parameter ϵ.

