uai2022

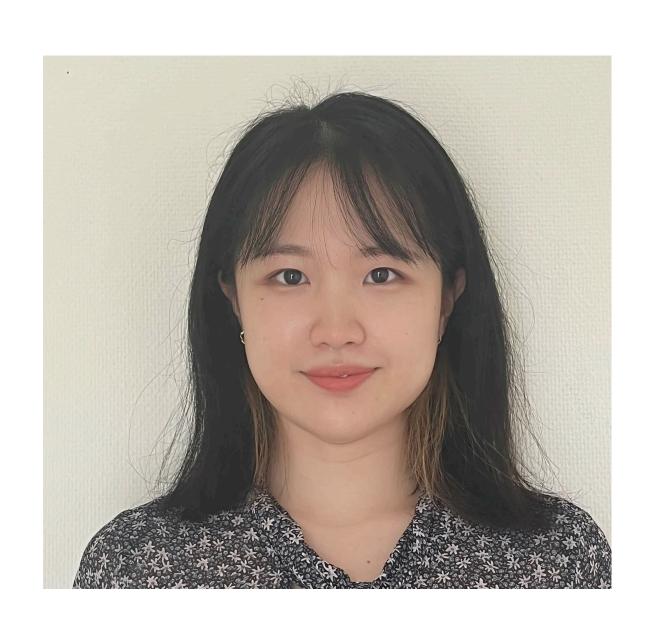


# How unfair is private learning?

Amartya Sanyal, Yaxi Hu, Fanny Yang



Amartya



Yaxi



Fanny

Privacy and Fairness are both desirable properties in machine learning applications.







Privacy and Fairness are both desirable properties in machine learning applications.







Prior Work has mostly looked at the intersection:

Privacy and Fairness are both desirable properties in machine learning applications.







Prior Work has mostly looked at the intersection:

Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.

Privacy and Fairness are both desirable properties in machine learning applications.







Prior Work has mostly looked at the intersection:

Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.

Fairness and Accuracy: Sagawa et. al. 2019, Du et al. 2021, Goel et. al. 2021.

Privacy and Fairness are both desirable properties in machine learning applications.







Prior Work has mostly looked at the intersection:

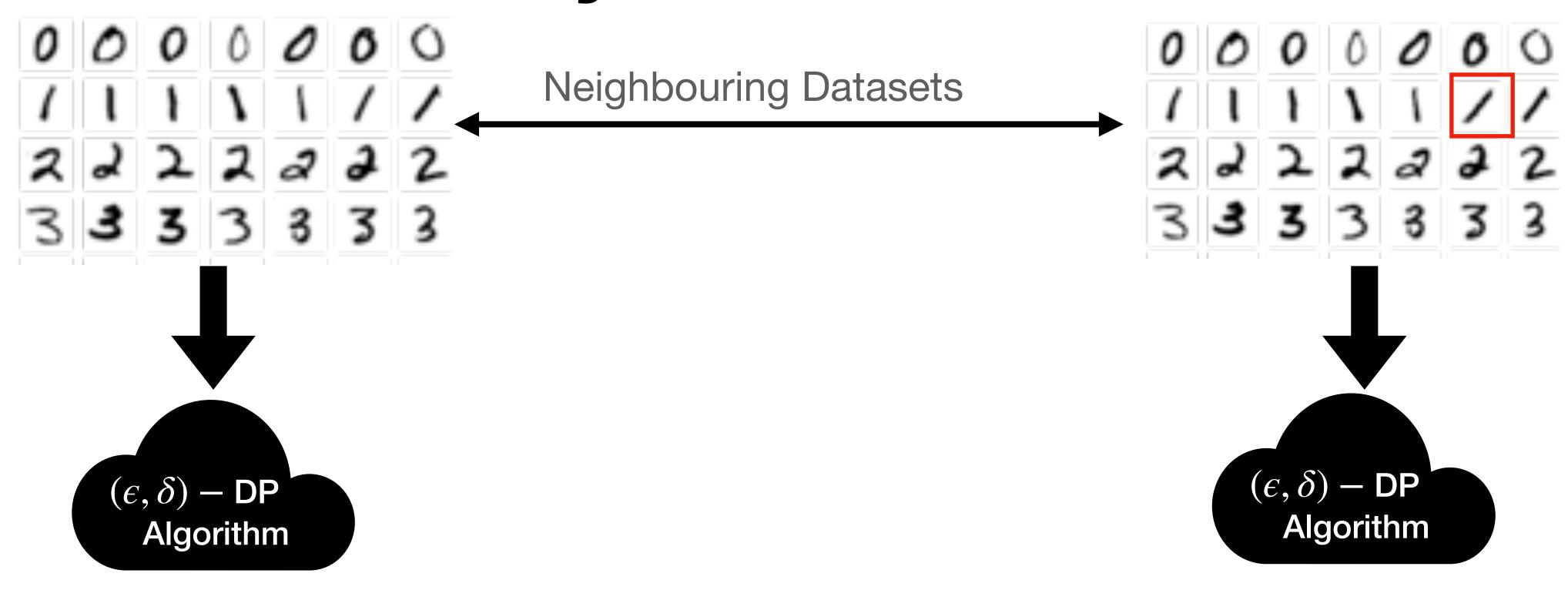
Privacy and Accuracy: Kasiviswanathan et al. 2008, Feldman and Xiao 2014, Alon et. al., 2022.

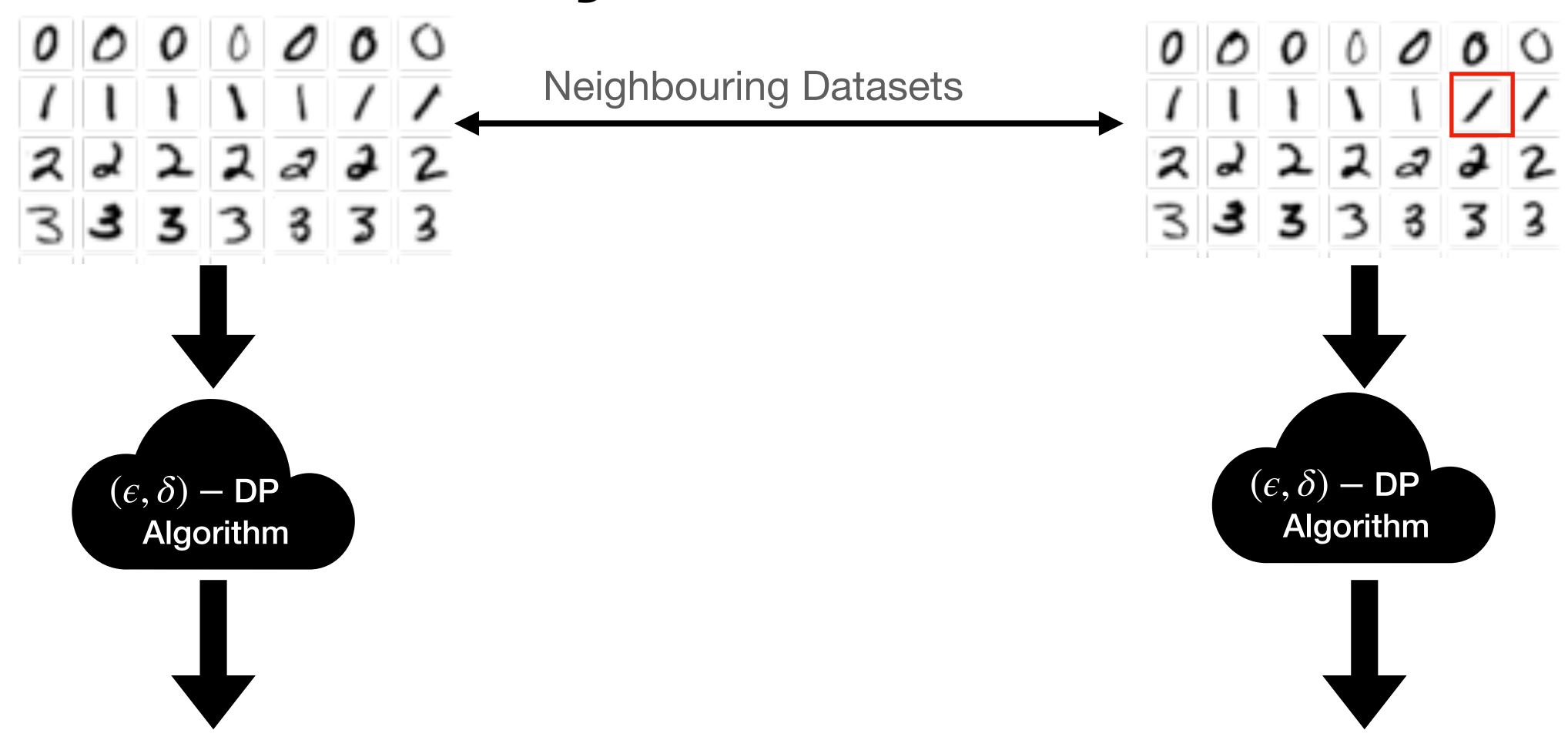
Fairness and Accuracy: Sagawa et. al. 2019, Du et al. 2021, Goel et. al. 2021.

THIS WORK: The interaction of Privacy and Fairness of nearly accurate algorithms.

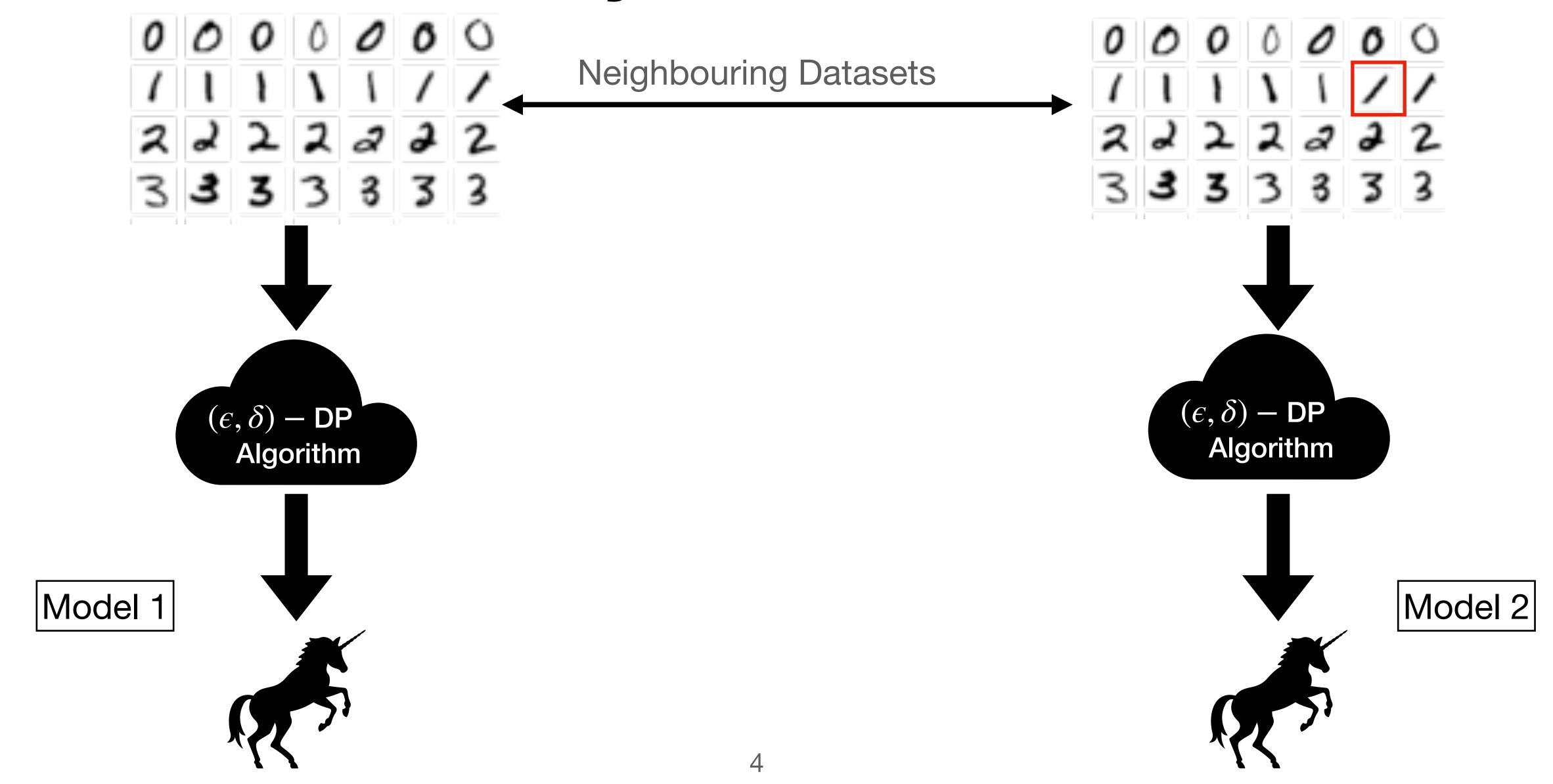


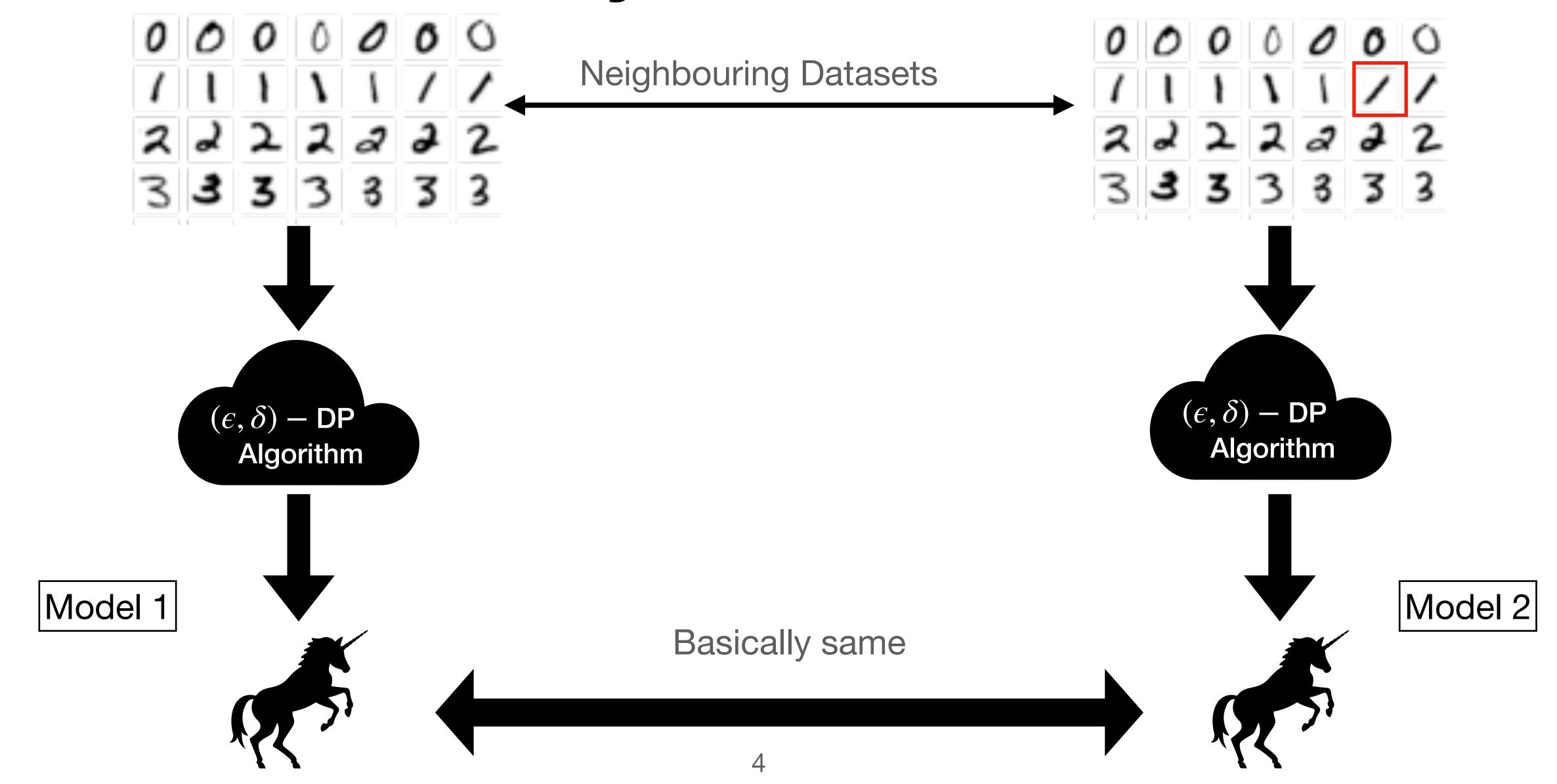


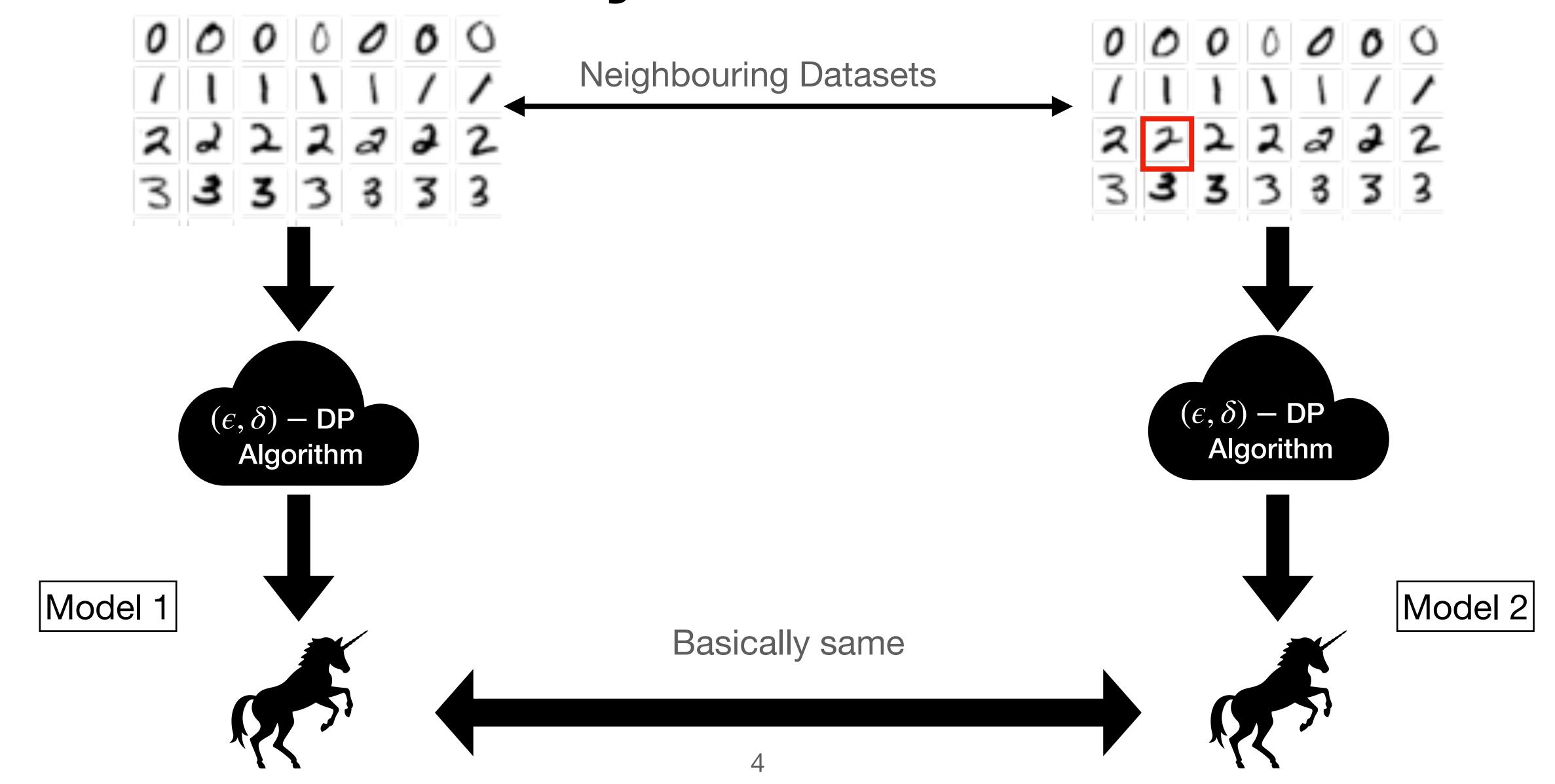


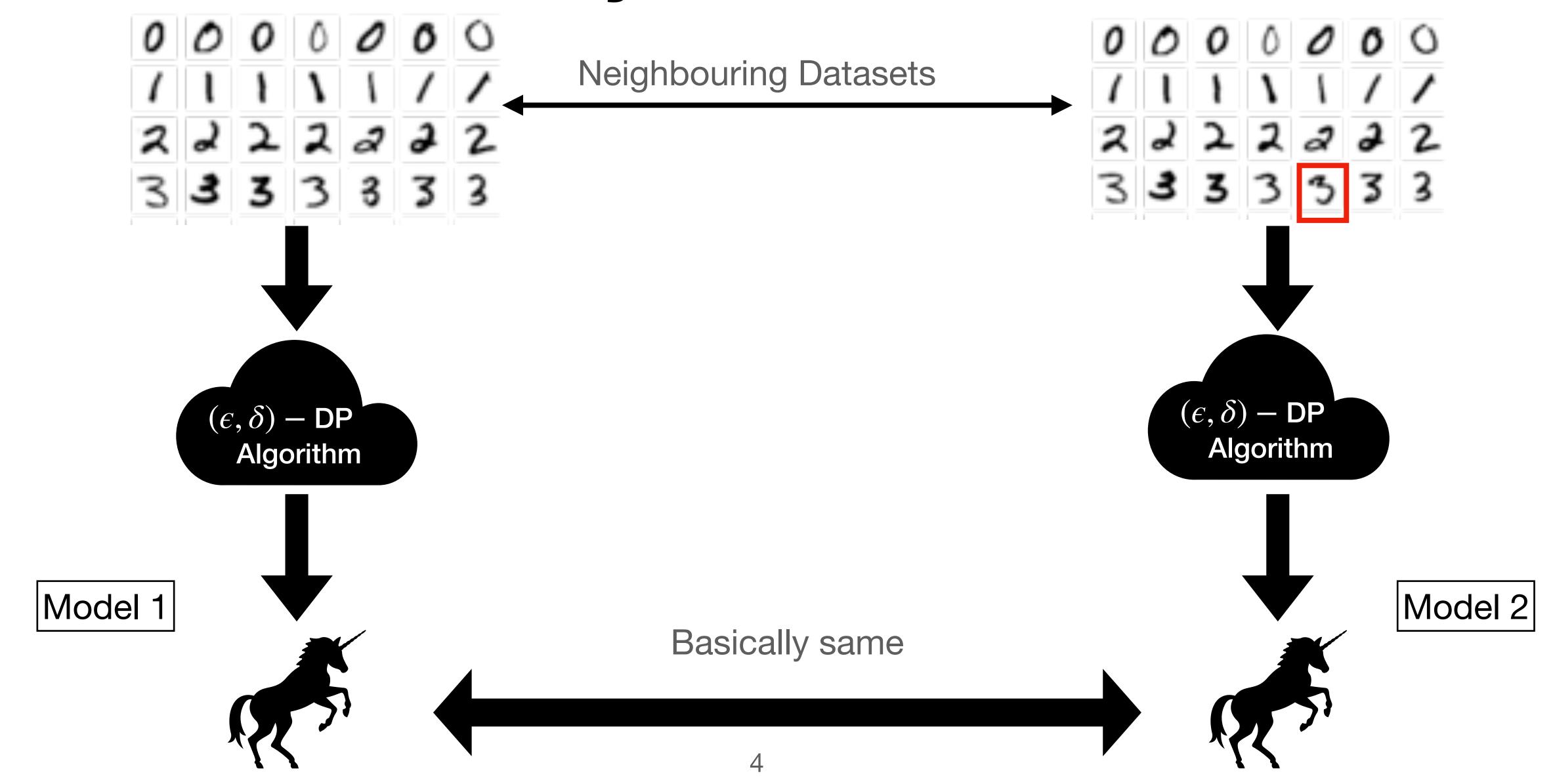




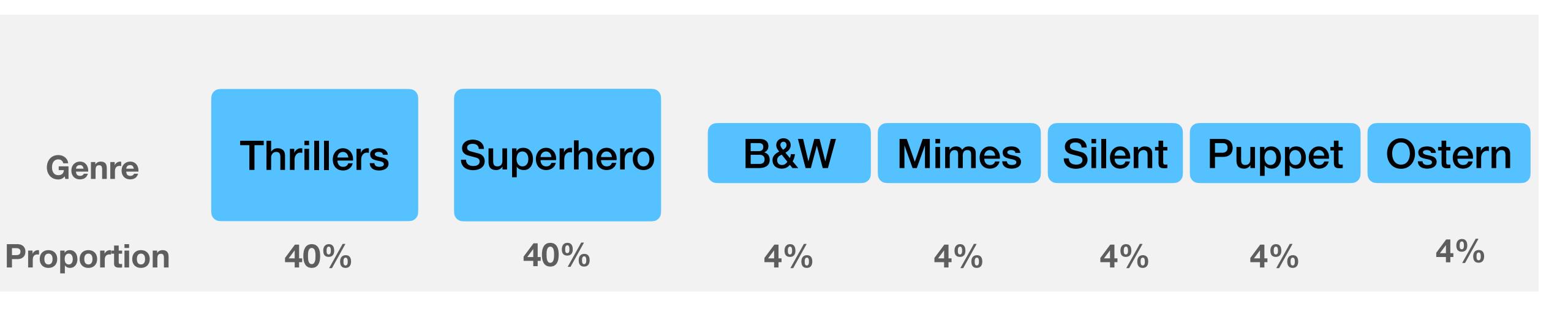


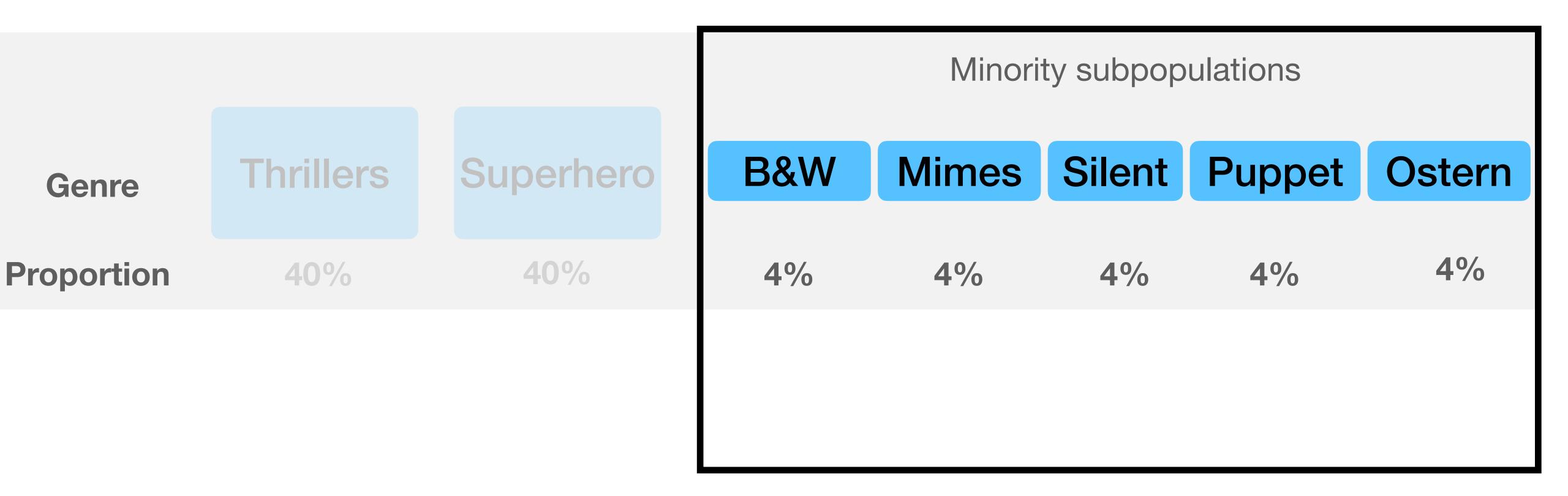


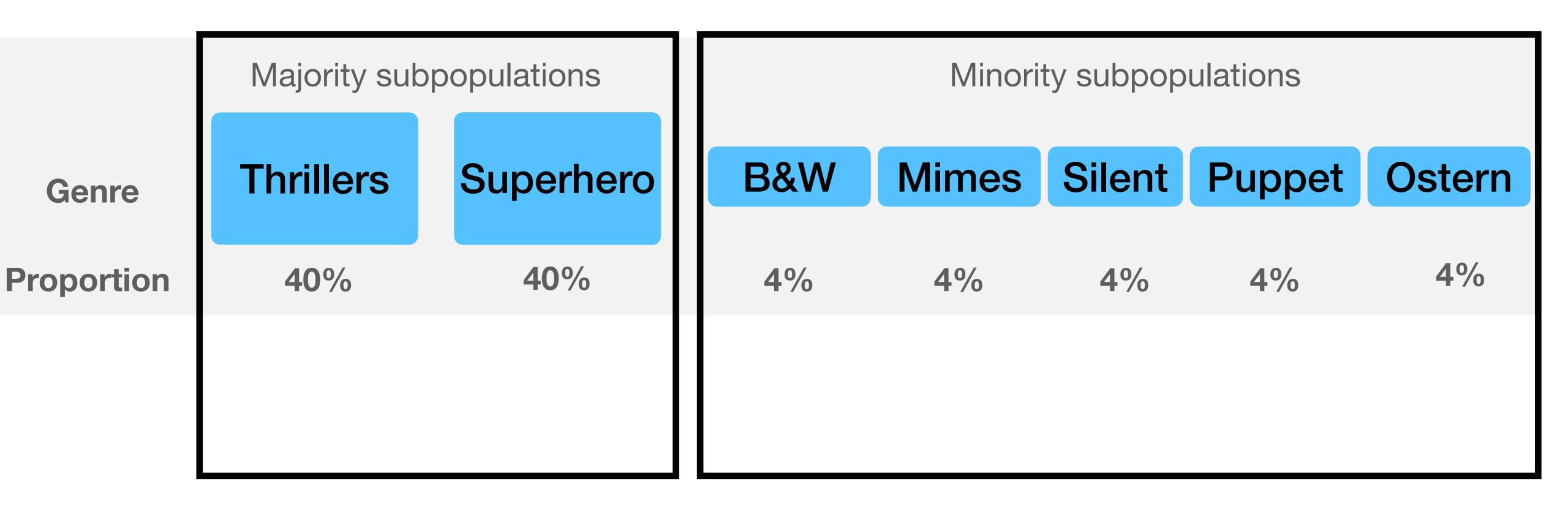


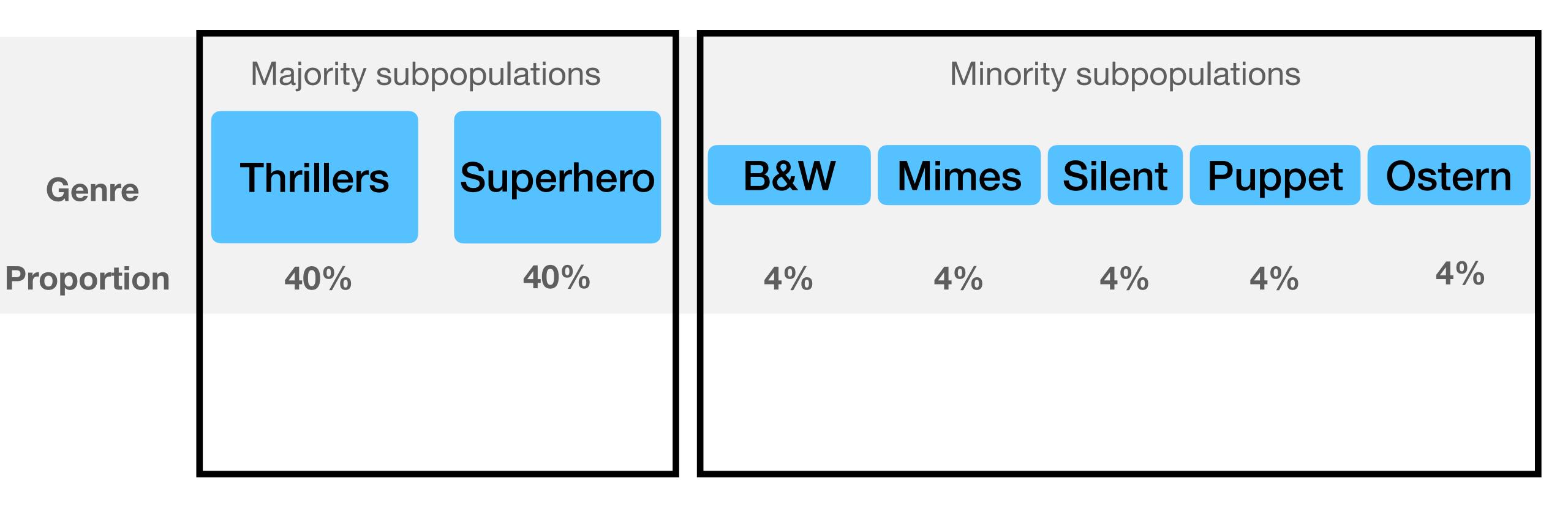






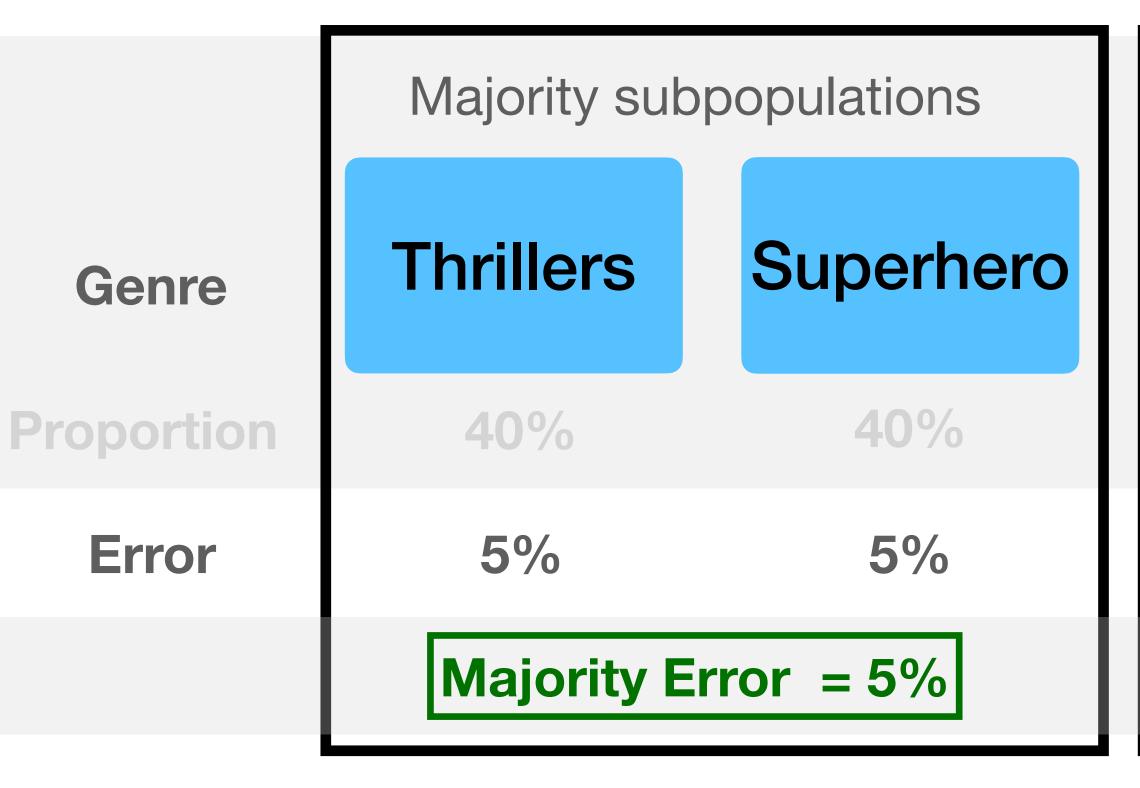


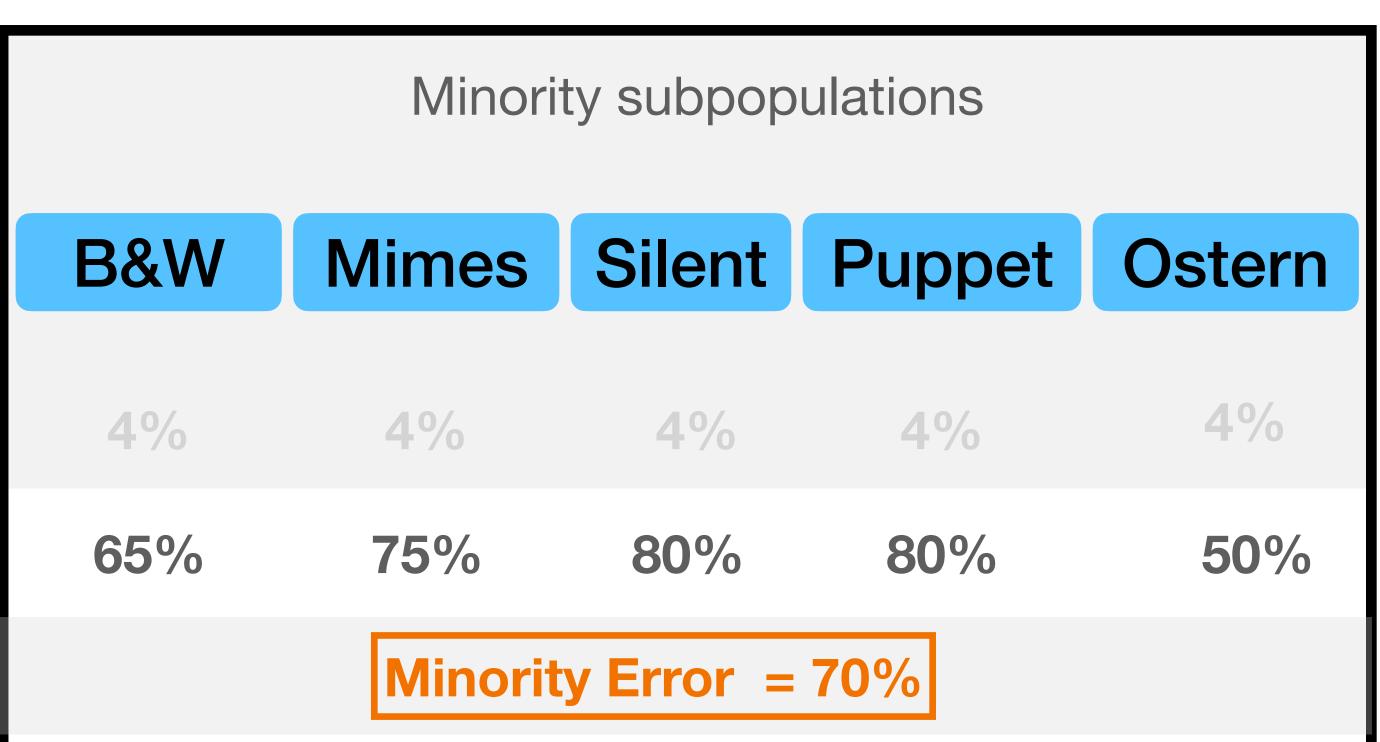


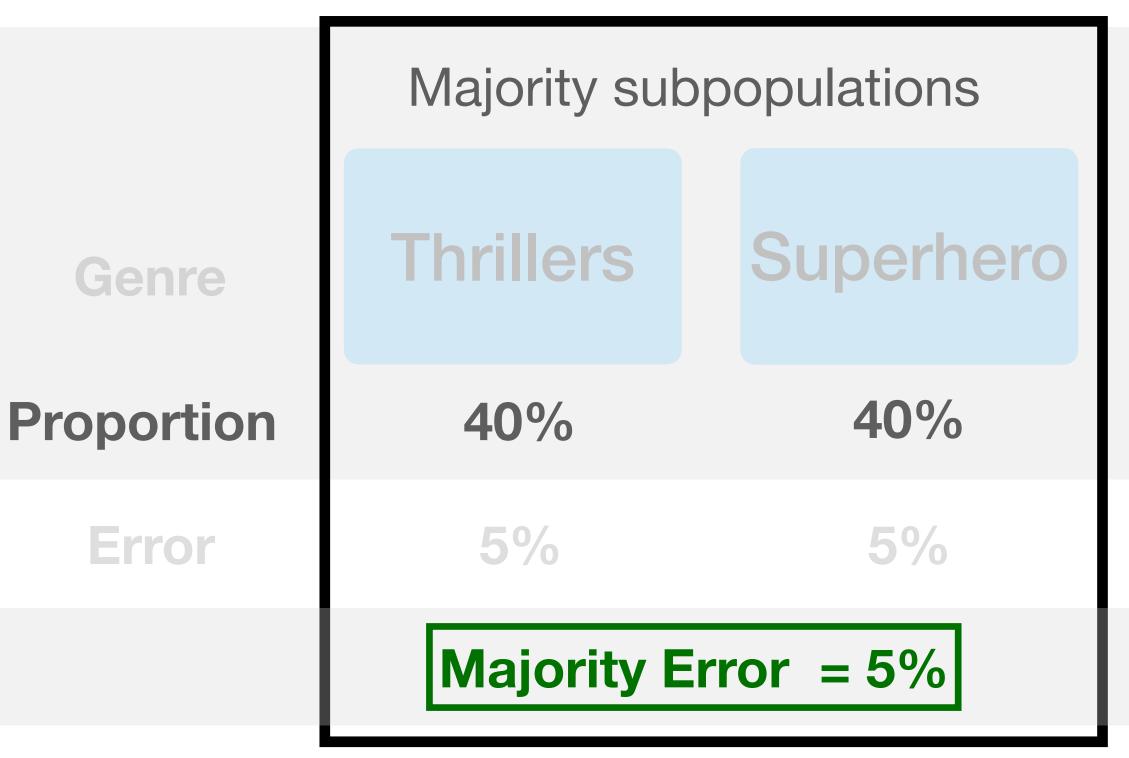


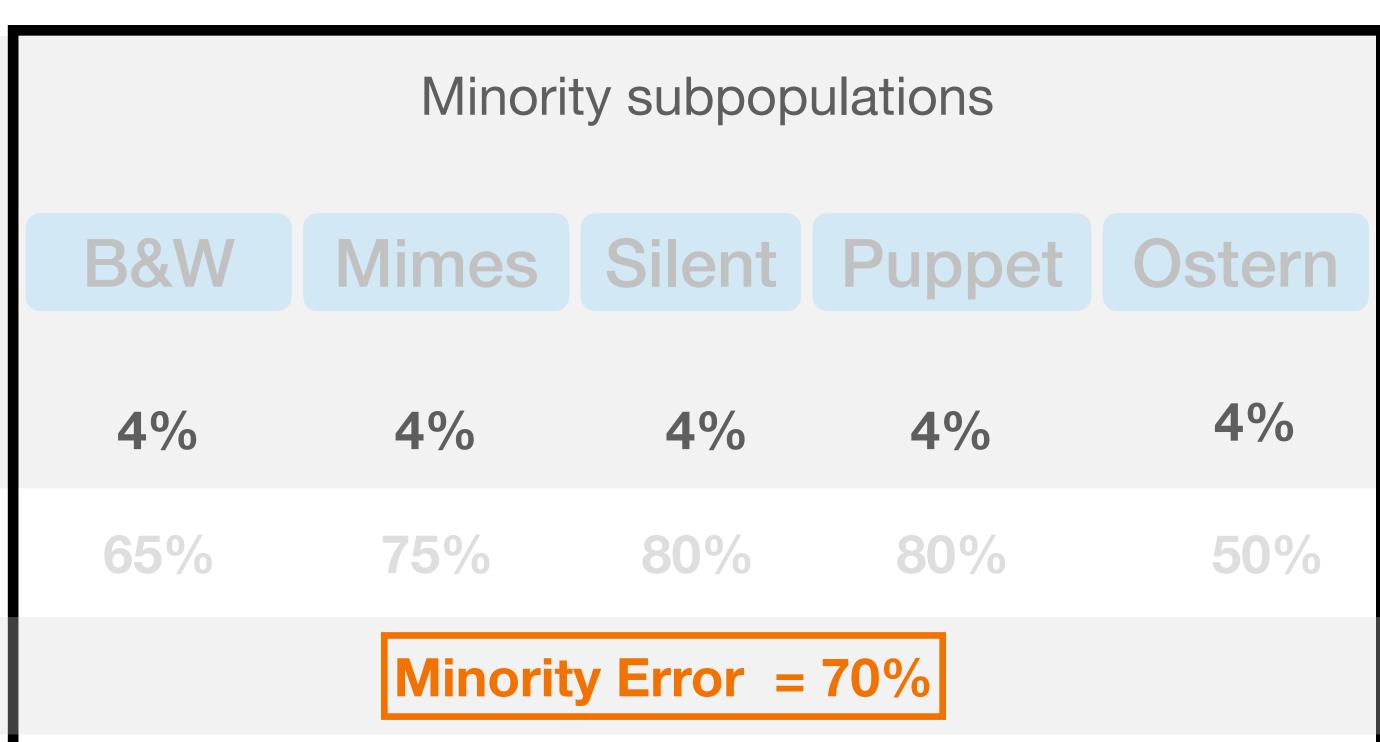
|            | Majority subpopulations |           |  |  |
|------------|-------------------------|-----------|--|--|
| Genre      | Thrillers               | Superhero |  |  |
| Proportion | 40%                     | 40%       |  |  |
| Error      | 5%                      | 5%        |  |  |
|            |                         |           |  |  |

| Minority subpopulations |          |             |        |        |        |  |
|-------------------------|----------|-------------|--------|--------|--------|--|
| B&\                     |          | Mimes       | Silent | Puppet | Ostern |  |
| 4%                      |          | 4%          | 4%     | 4%     | 4%     |  |
| 65%                     | <b>6</b> | <b>75</b> % | 80%    | 80%    | 50%    |  |
|                         |          |             |        |        |        |  |



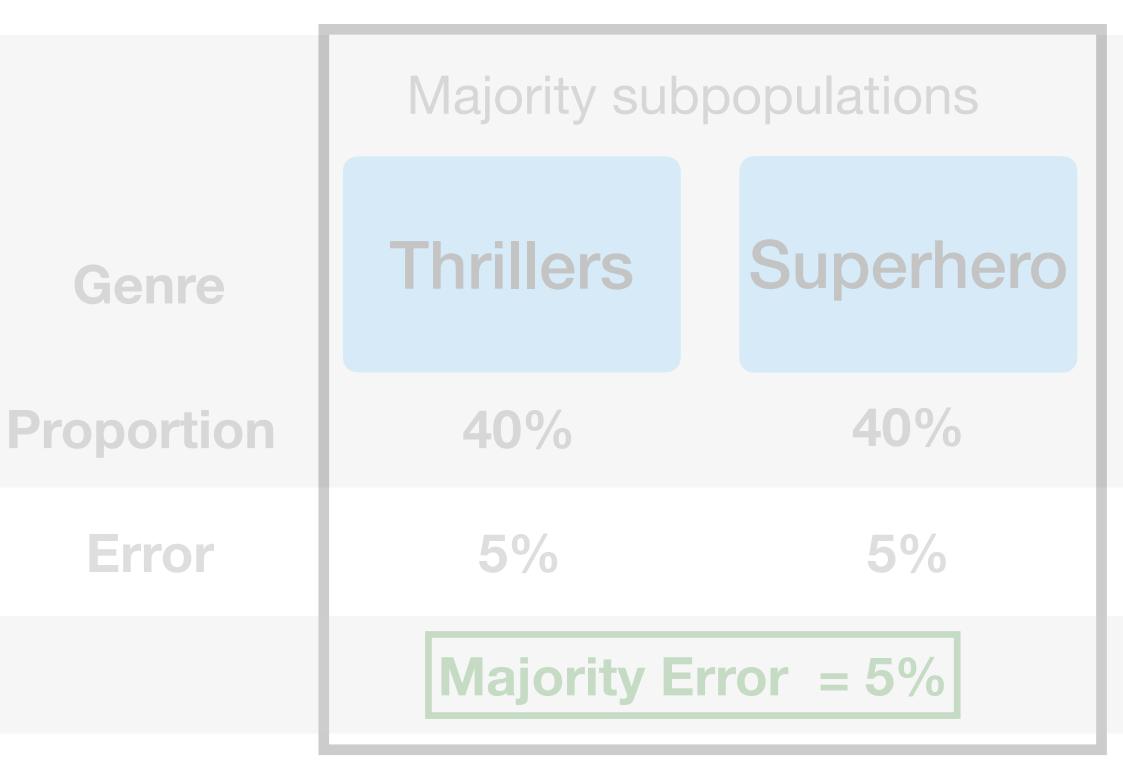


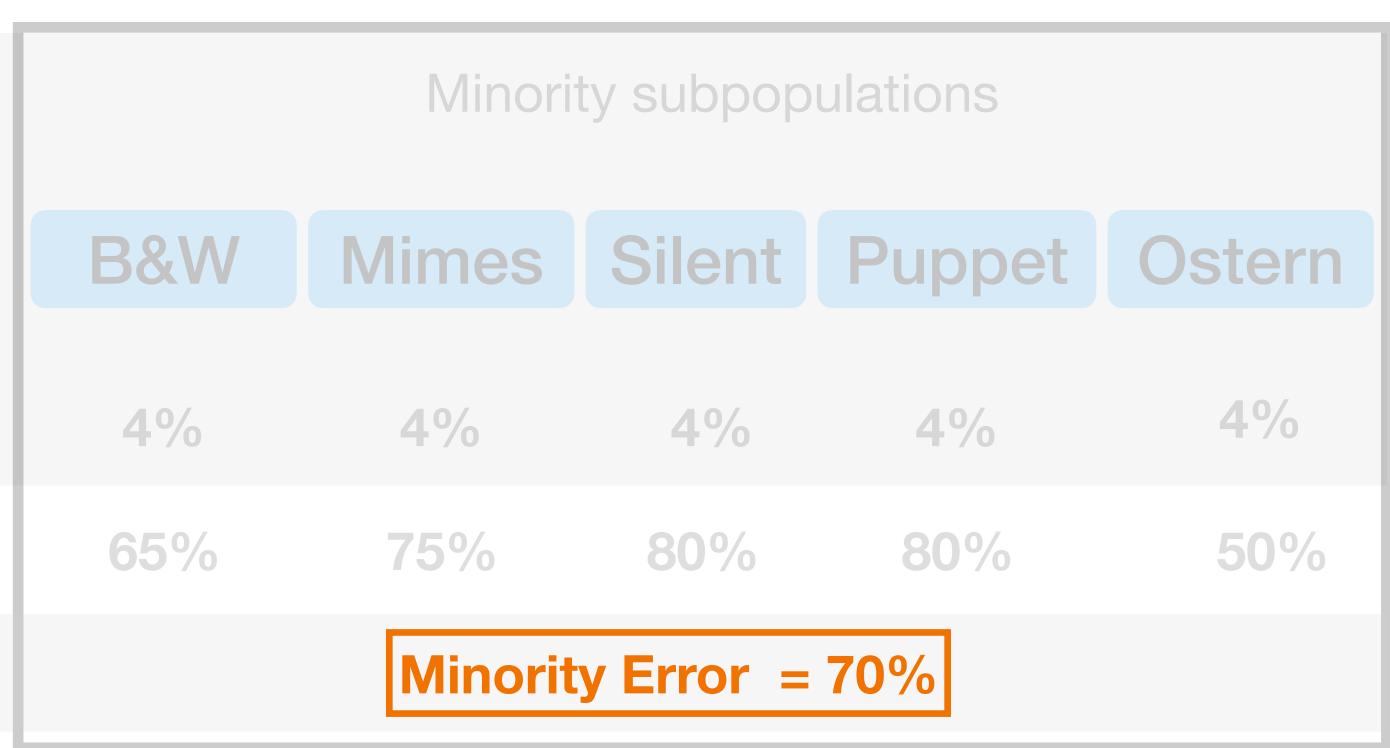






#### ML Problem: Is the movie safe to watch for kids?

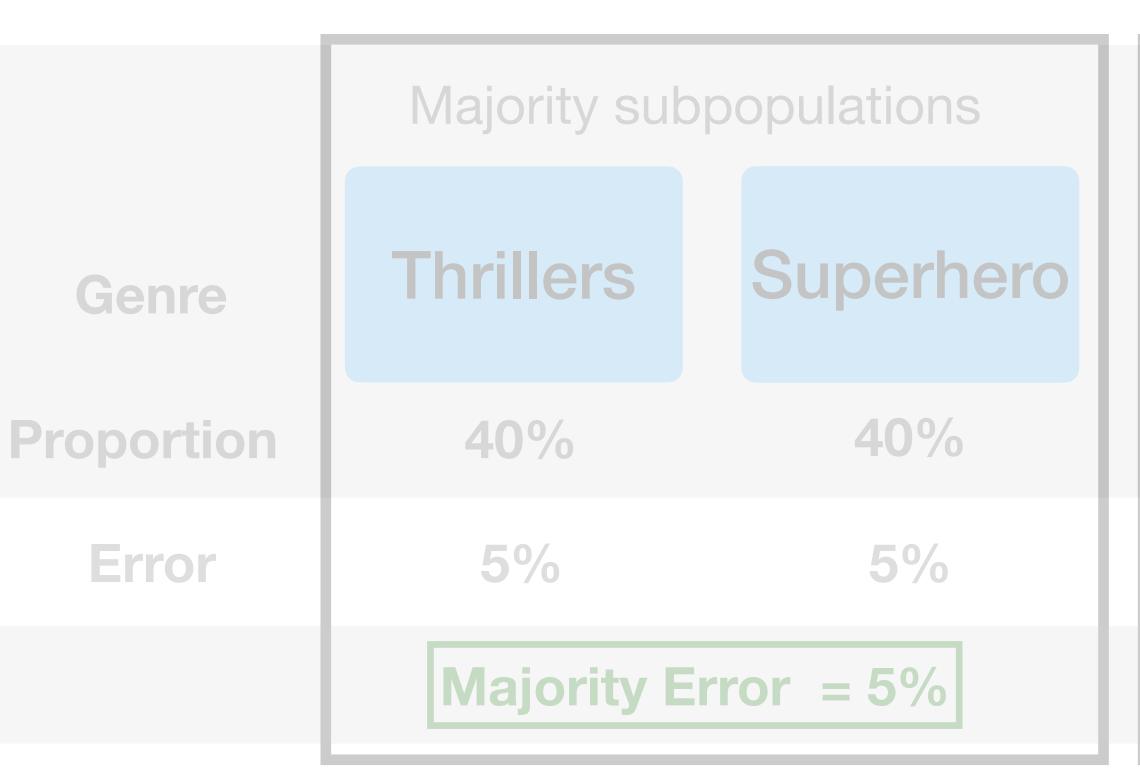


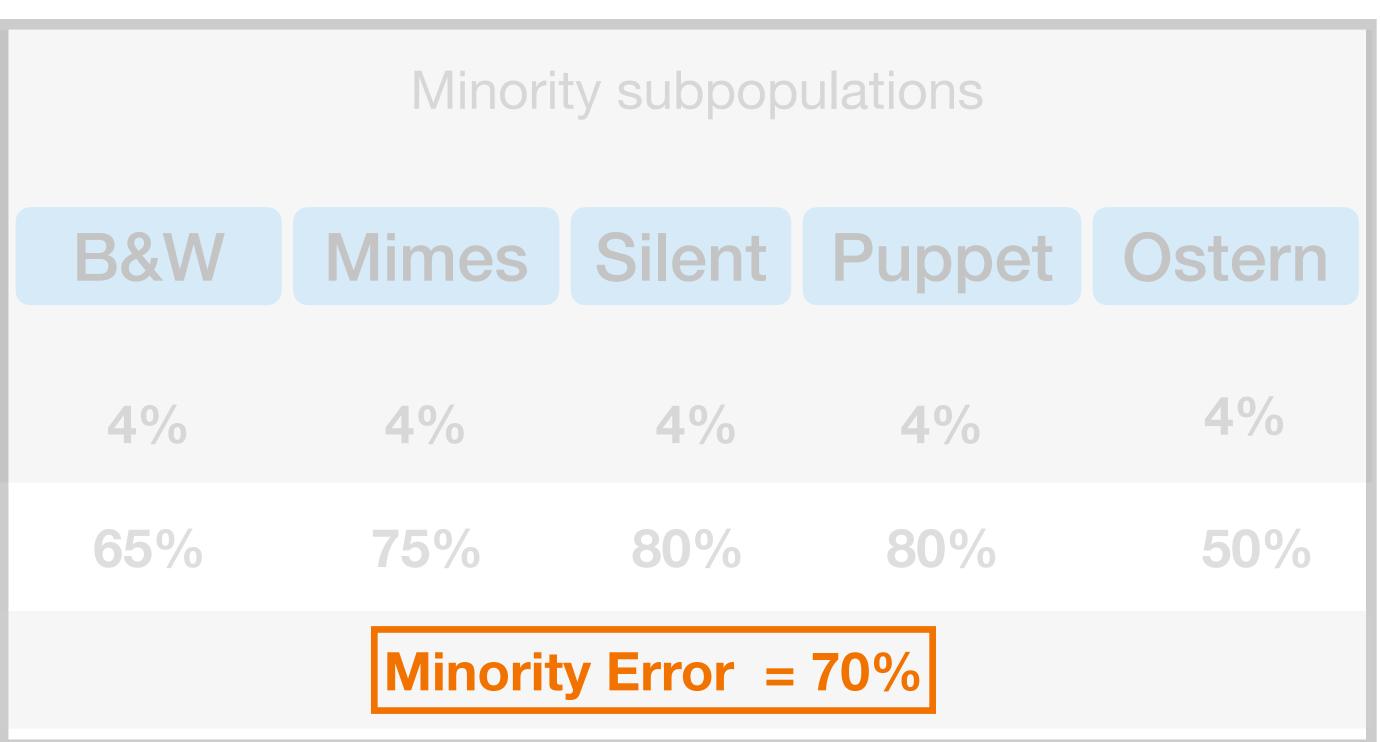


Total Error = 18%

Accuracy Discrepancy = Minority Error - Total Error

#### ML Problem: Is the movie safe to watch for kids?





Total Error = 18%

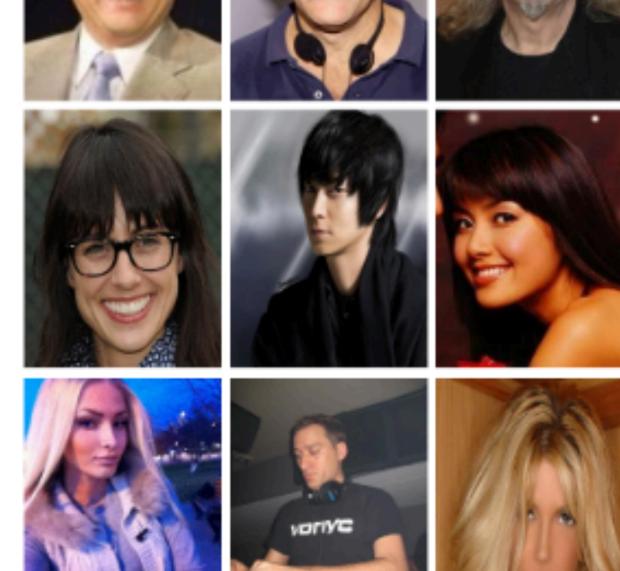
Accuracy Discrepancy = 70 - 18 = 52%



40 binary attributes with each image

Eyeglasses

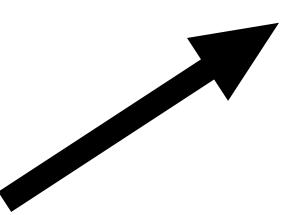
Bangs



Pointy Noise

40 binary attributes -> 2<sup>40</sup> subpopulations.





Eyeglasses

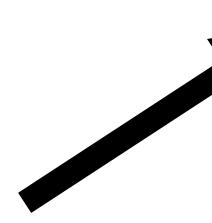
Bangs



Pointy Noise

#### 40 binary attributes -> 240 subpopulations.

40 binary attributes with each image



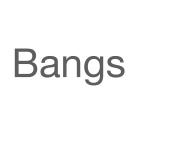
• Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.

Eyeglasses





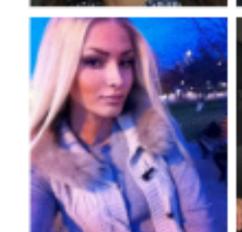


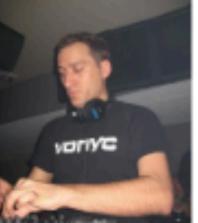








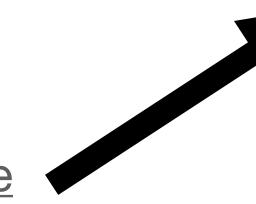








#### 40 binary attributes -> 240 subpopulations.



40 binary attributes with each image

Eyeglasses

















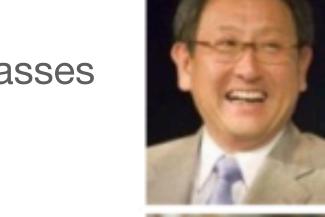


- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,....,pointy noise.

#### 40 binary attributes with each image



Bangs



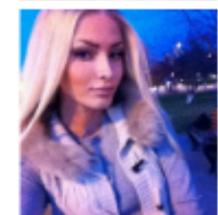


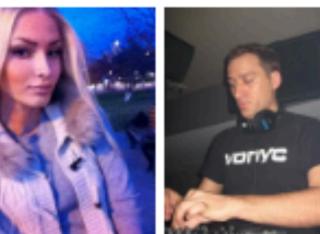














#### 40 binary attributes -> 2<sup>40</sup> subpopulations.

- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,....,pointy noise.

- Subpopulation 2<sup>40</sup>: No eyeglasses, no bangs,..., no pointy nose.

### Example dataset CelebA

#### 40 binary attributes with each image

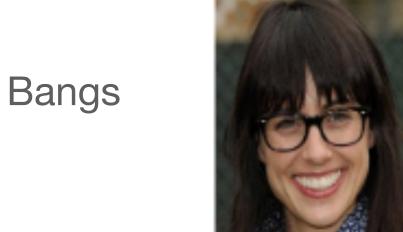


Pointy Noise



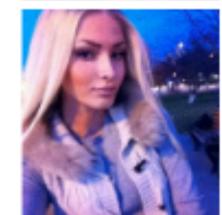


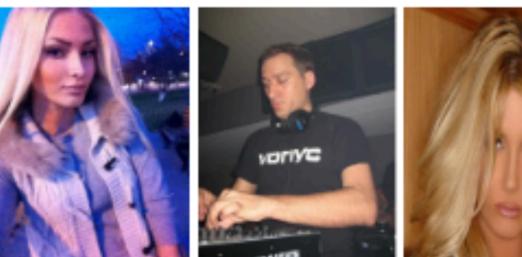










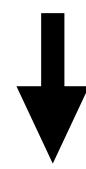


#### 40 binary attributes -> 2<sup>40</sup> subpopulations.



• Subpopulation 2: No eyeglasses, bangs,....,pointy noise.

• Subpopulation 2<sup>40</sup>: No eyeglasses, no bangs,..., no pointy nose.



# **Example dataset**CelebA

#### 40 binary attributes with each image





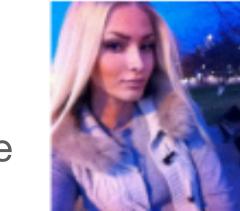


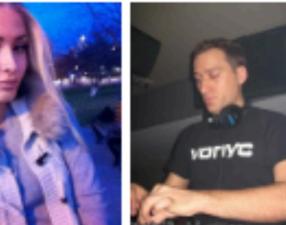








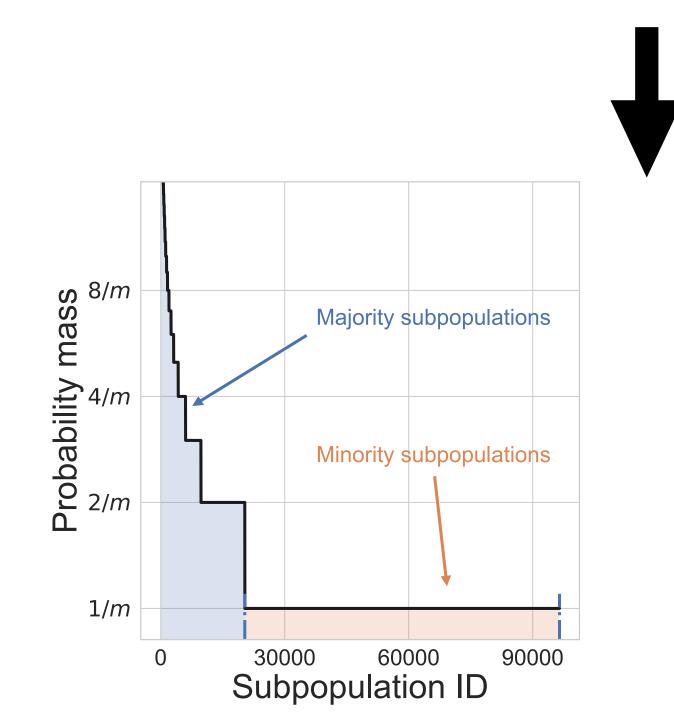








- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,....,pointy noise.
- ...
- •
- Subpopulation 2<sup>40</sup>: No eyeglasses, no bangs,..., no pointy nose.





# **Example dataset**CelebA

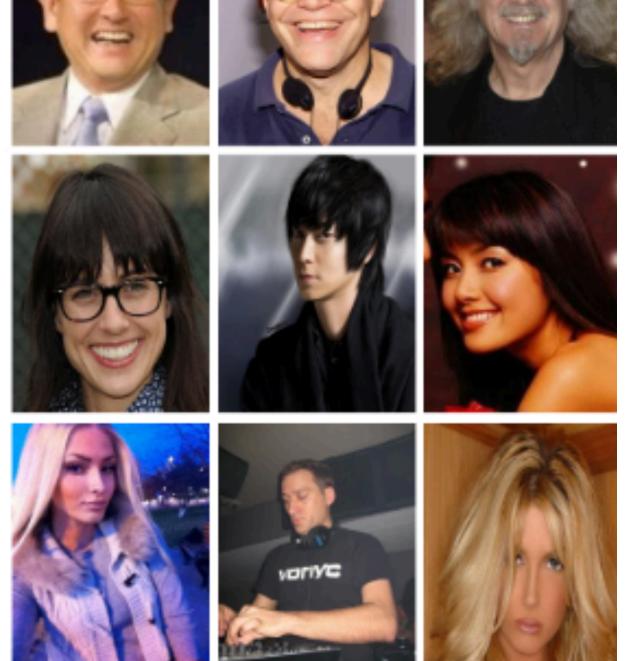
#### 40 binary attributes with each image





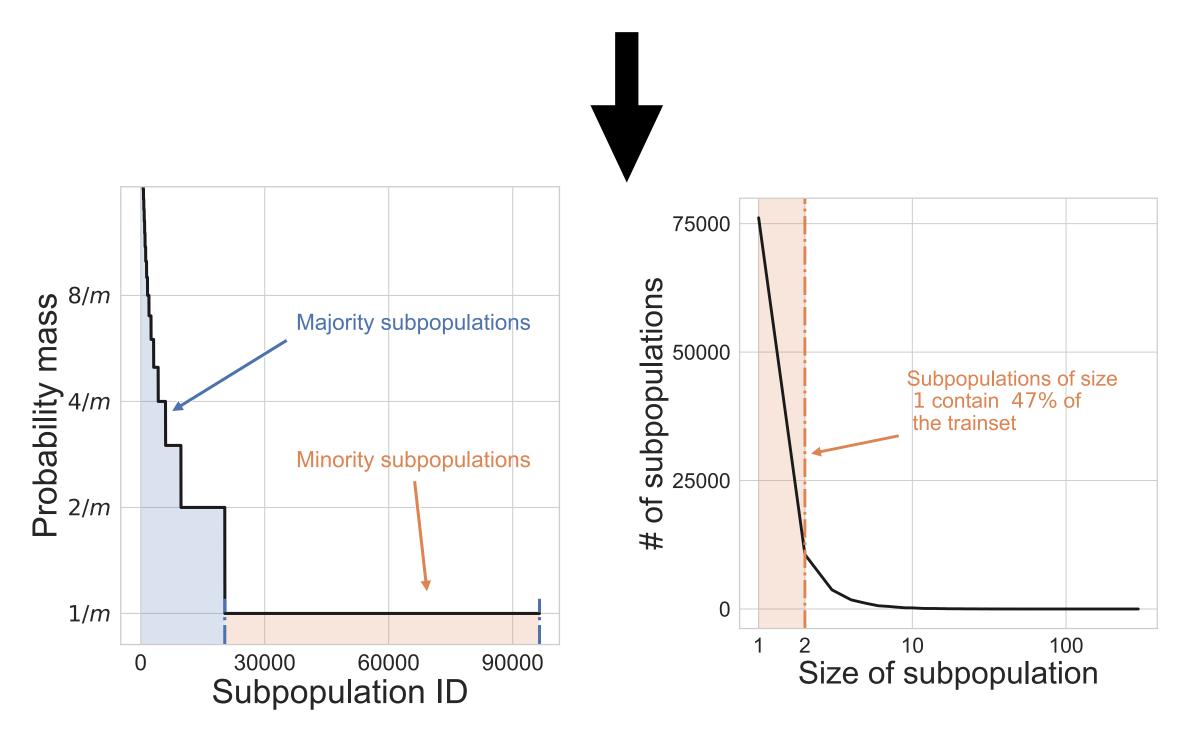
Bangs

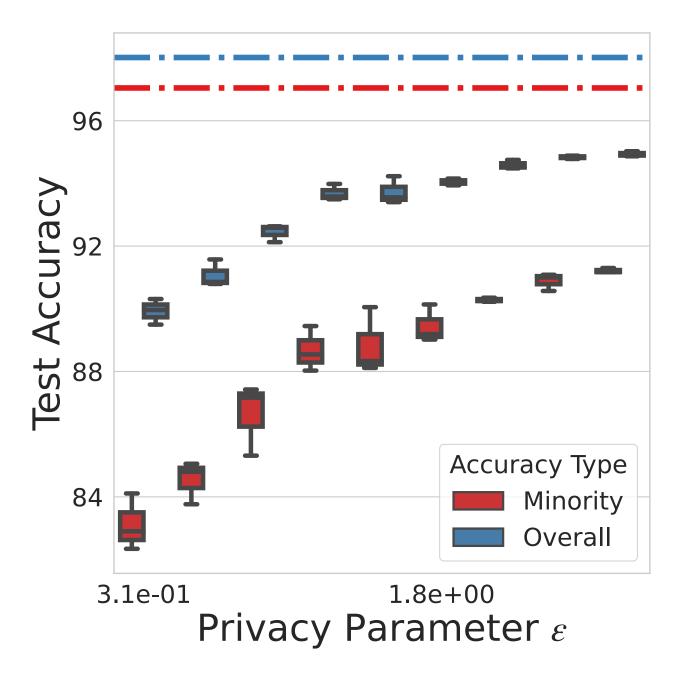


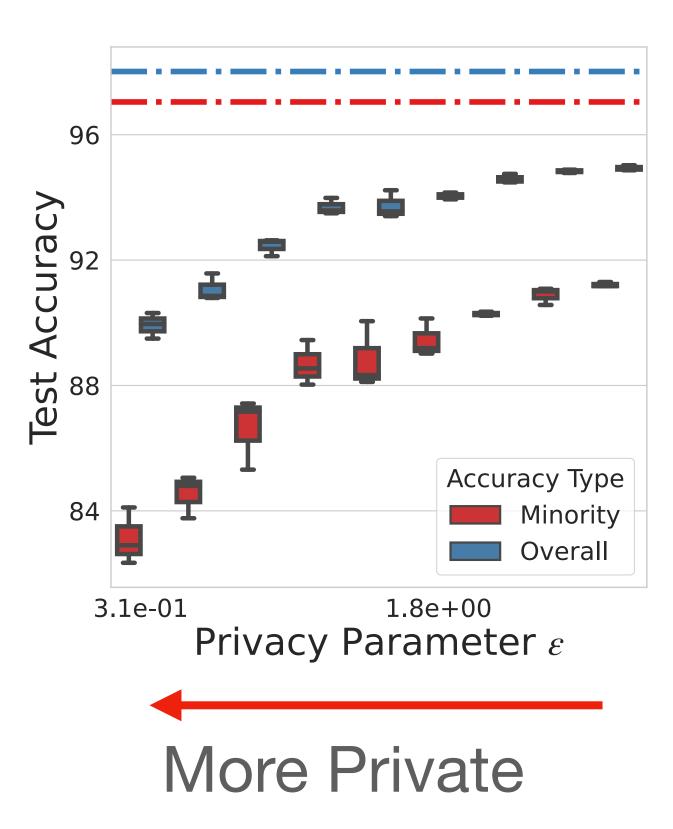


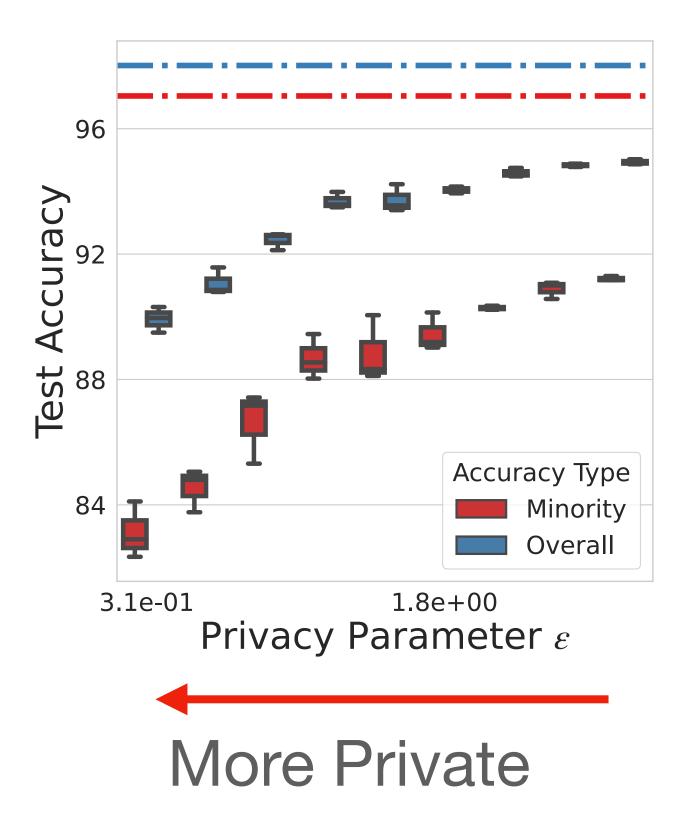
#### 40 binary attributes -> 240 subpopulations.

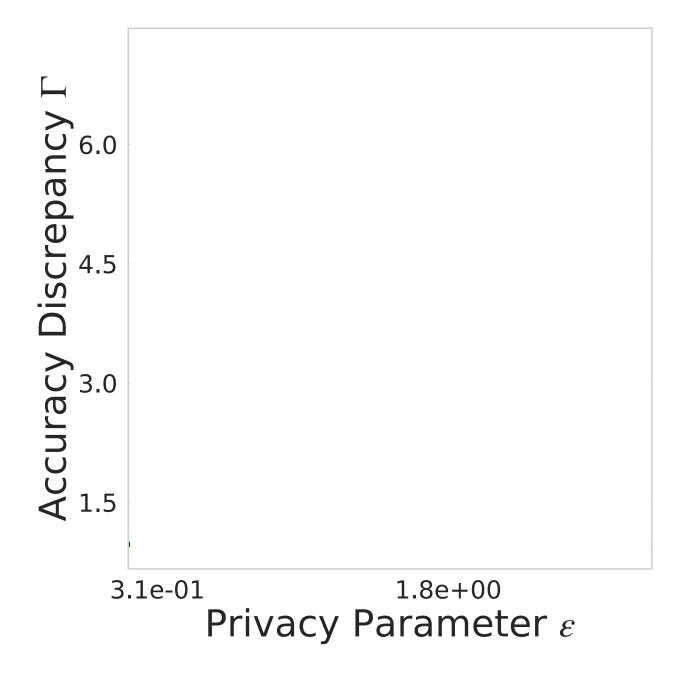
- Subpopulation 1: Eyeglasses, bangs, ..., pointy nose.
- Subpopulation 2: No eyeglasses, bangs,....,pointy noise.
- ...
- •
- Subpopulation 2<sup>40</sup>: No eyeglasses, no bangs,..., no pointy nose.

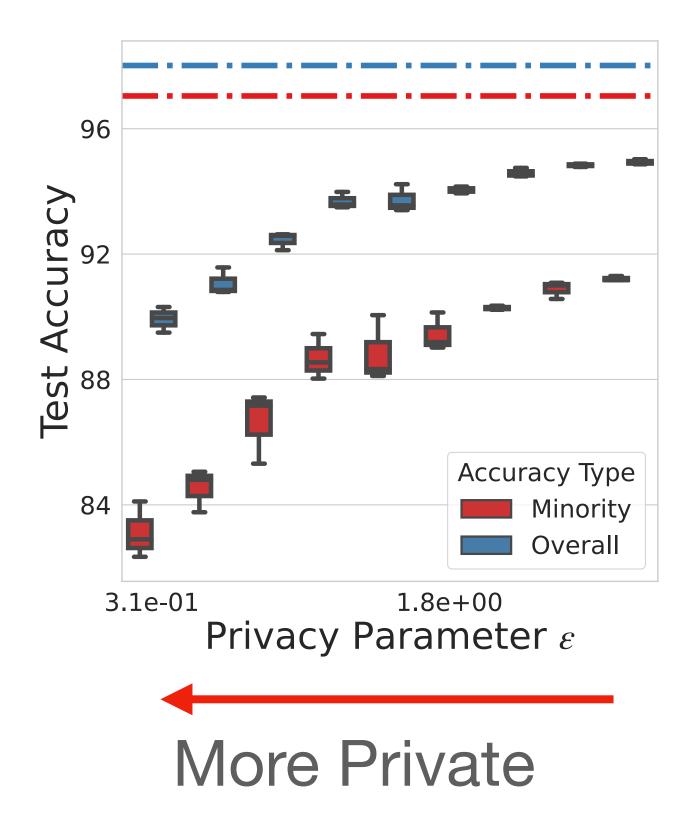


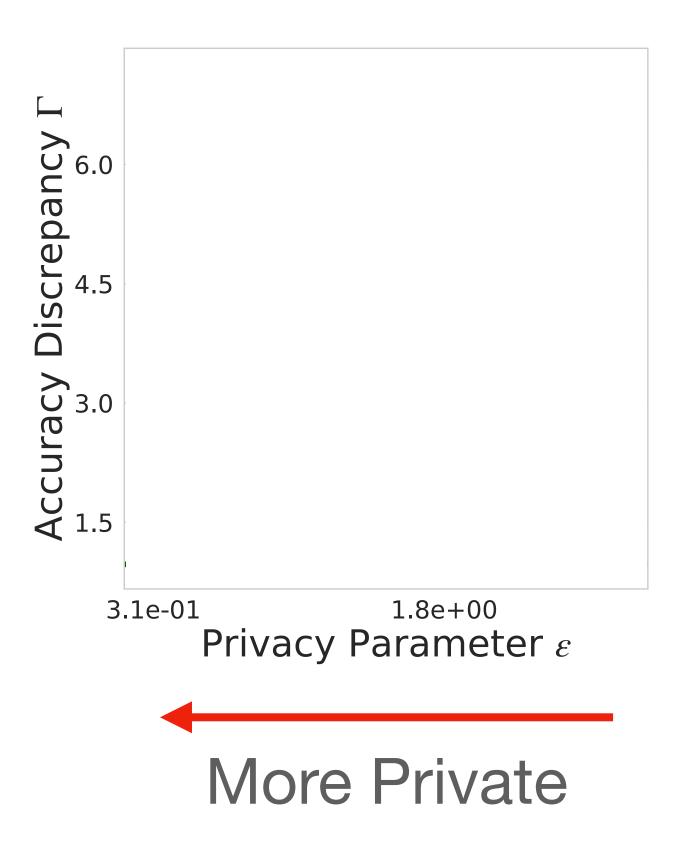






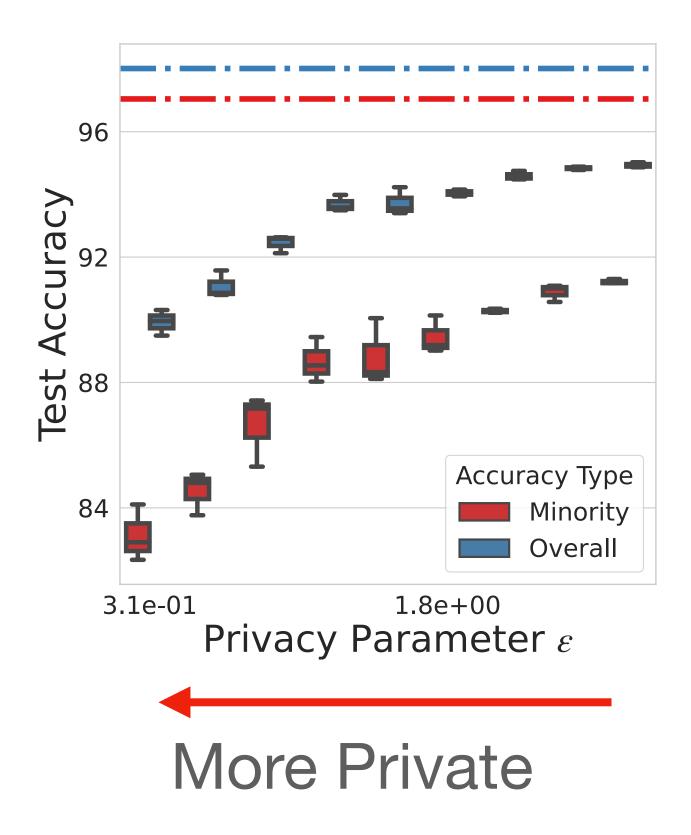


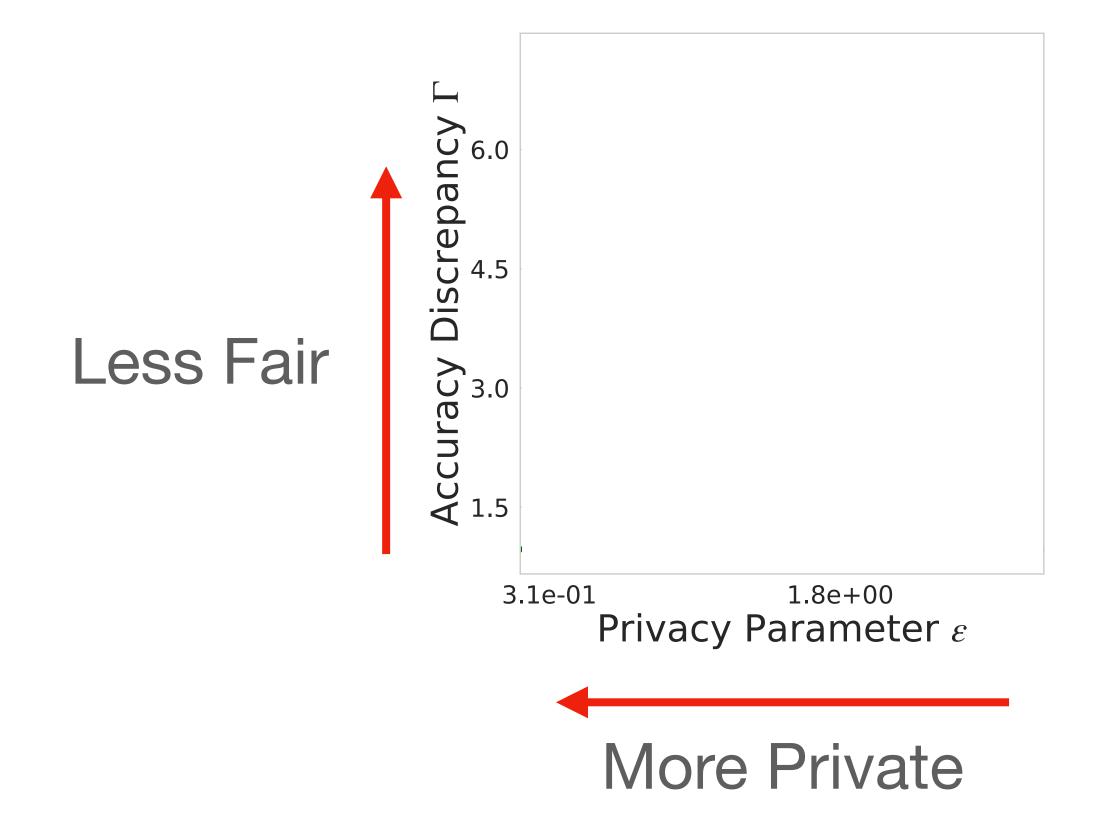




# Privacy vs Fairness

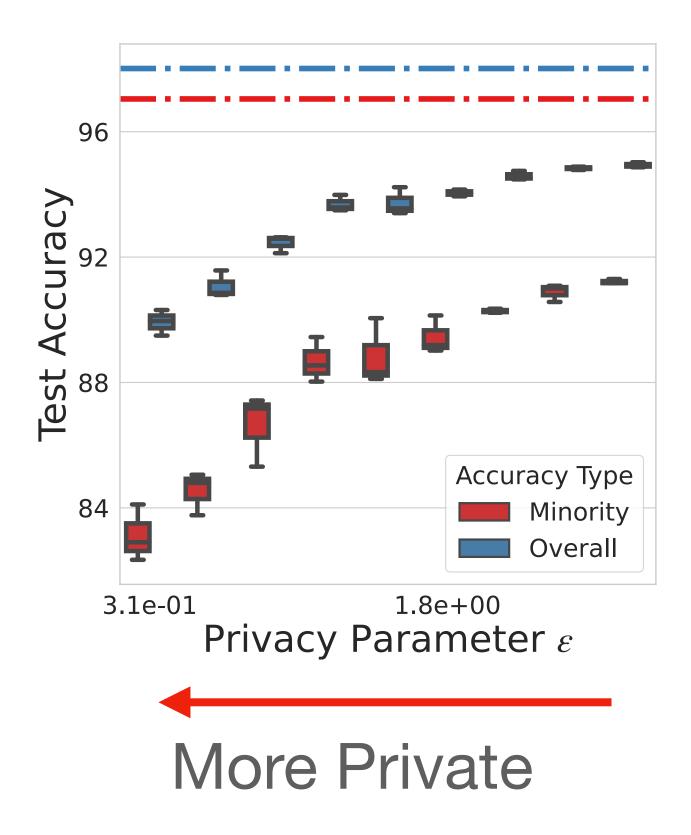
#### CelebA

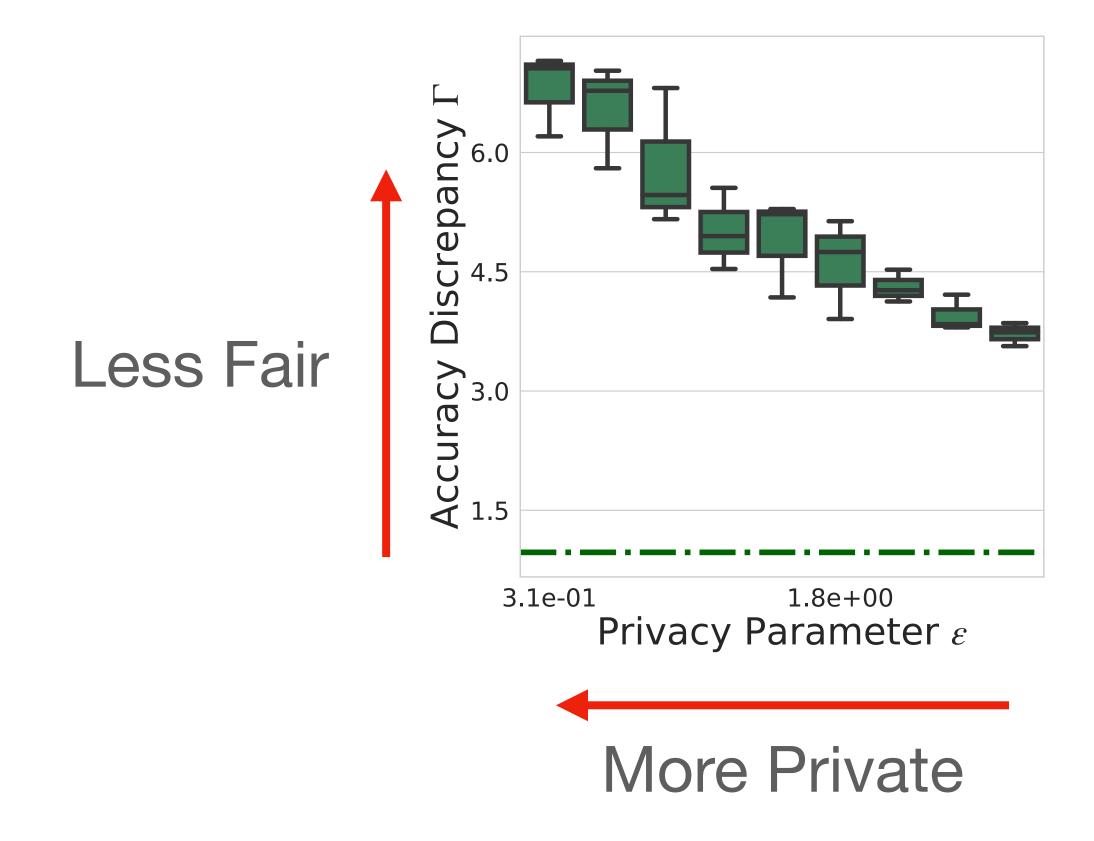


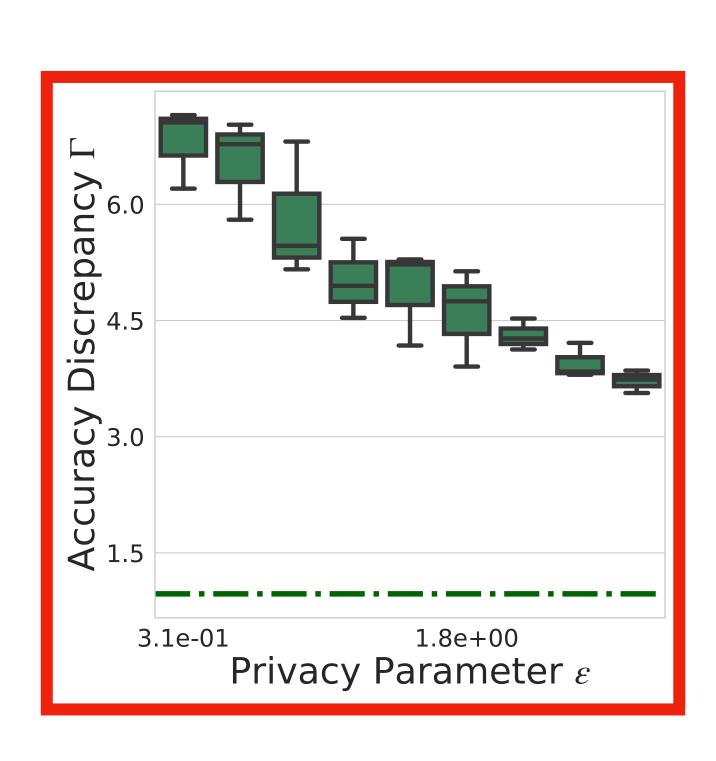


# Privacy vs Fairness

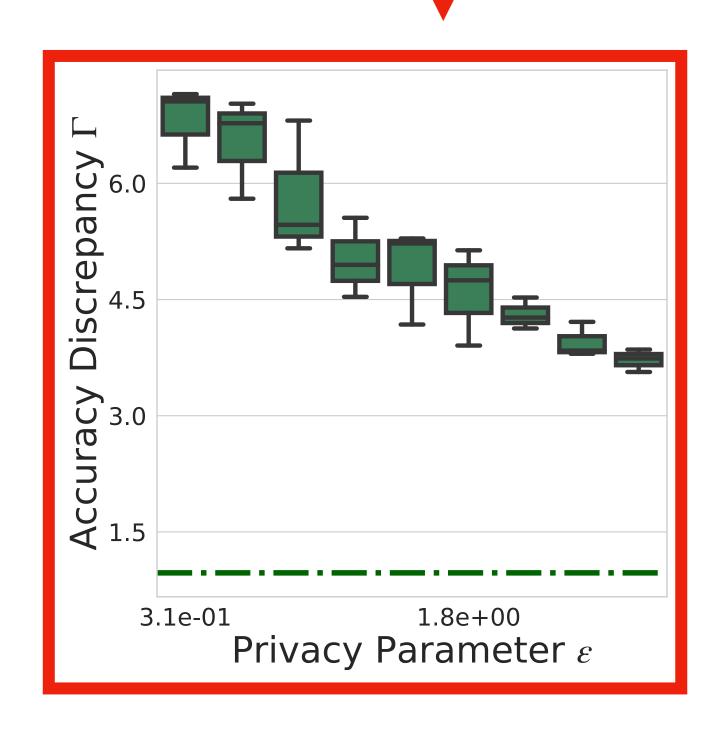
#### CelebA

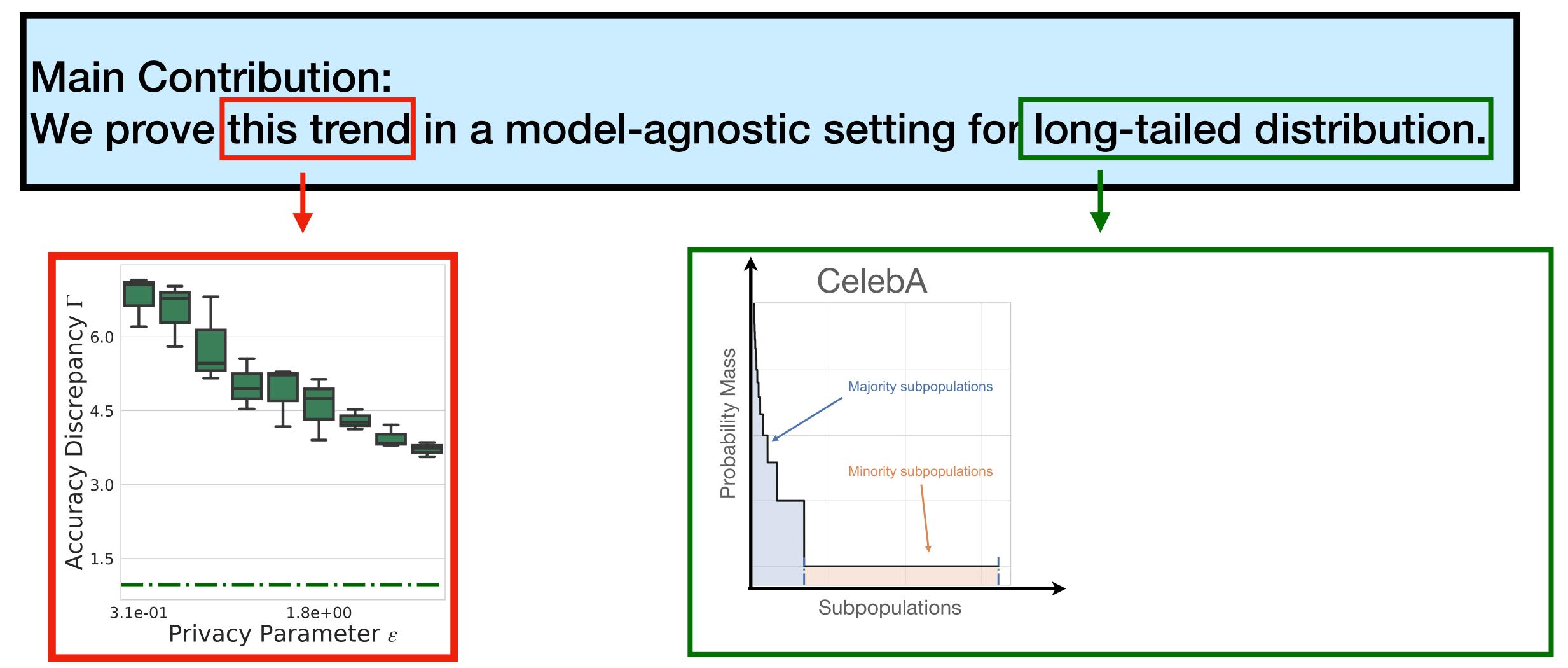


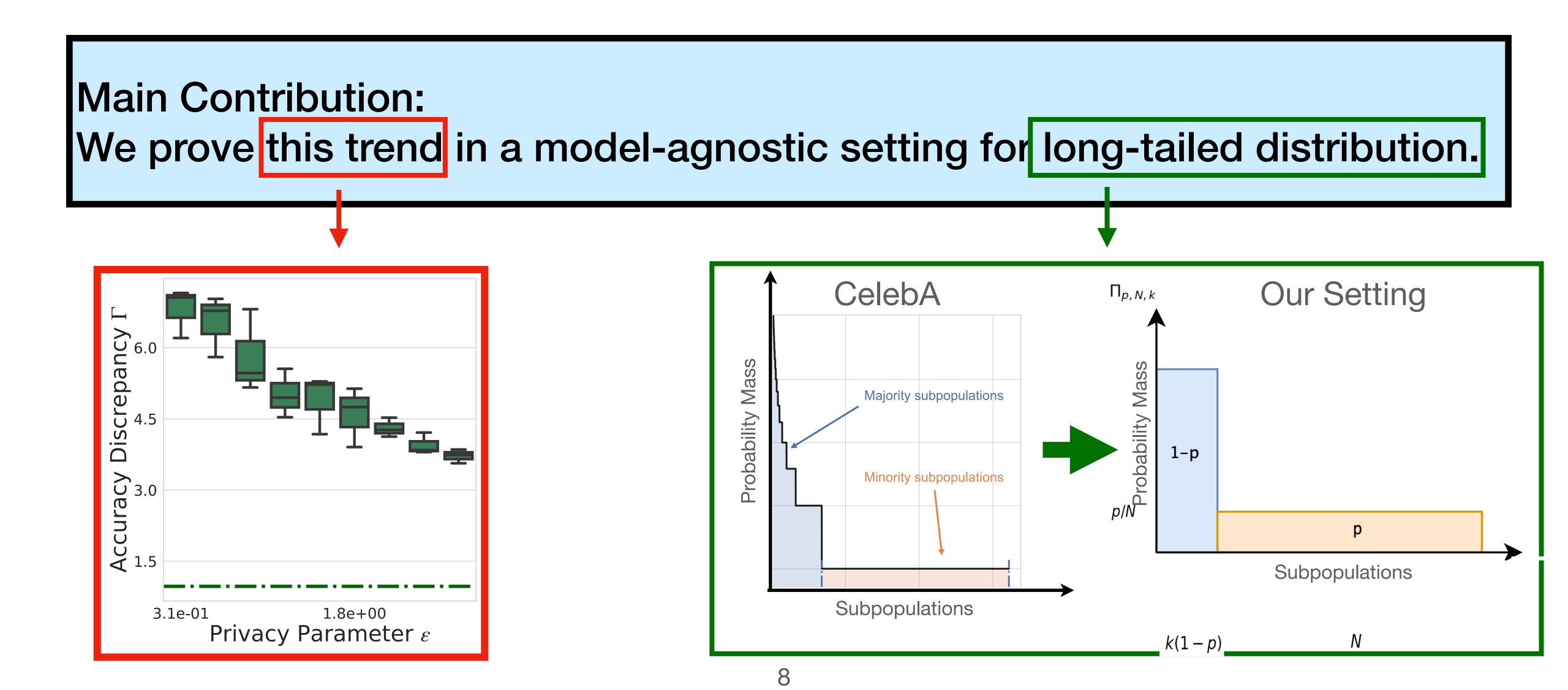




Main Contribution:
We prove this trend in a model-agnostic setting



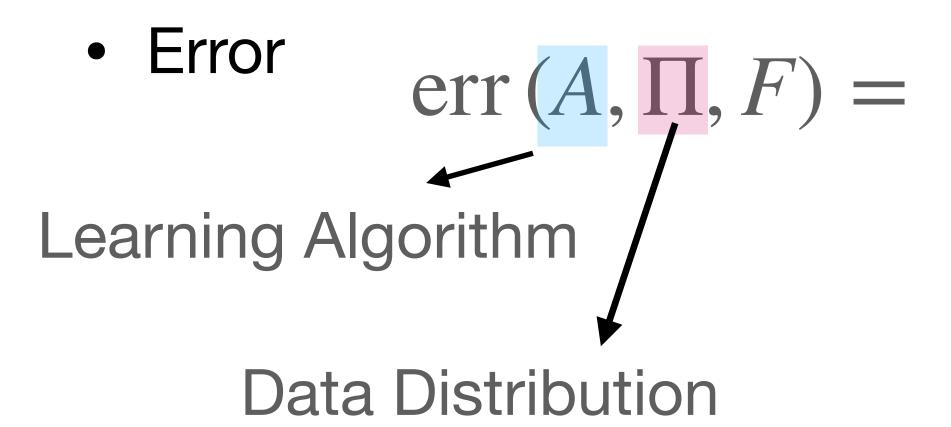




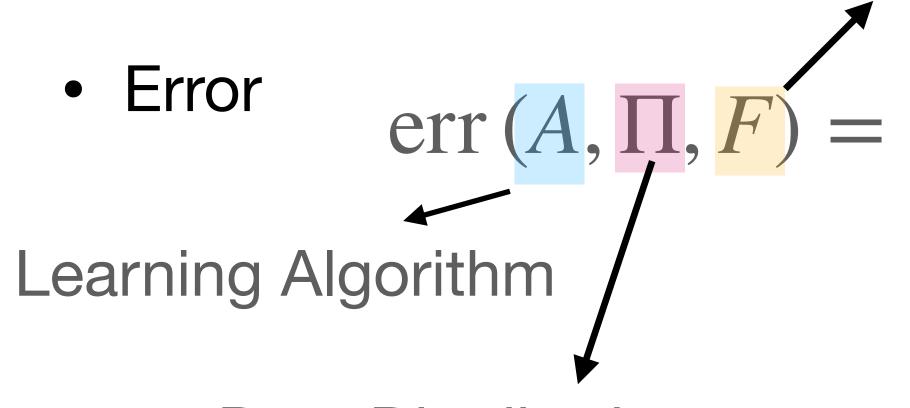
Error

• Error  $\operatorname{err}(A, \Pi, F) =$ 

• Error  $\operatorname{err}(A,\Pi,F)=$  Learning Algorithm

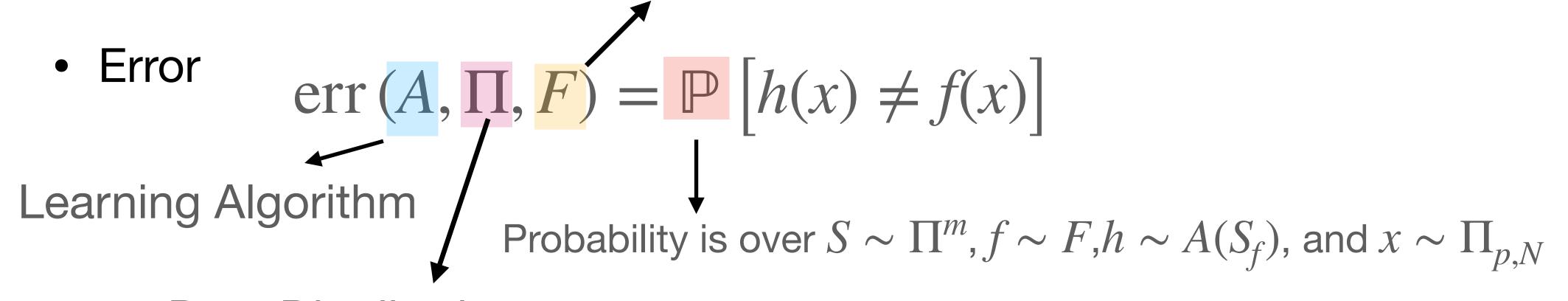


Prior distribution over labelling functions  $\subseteq Y^X$ 

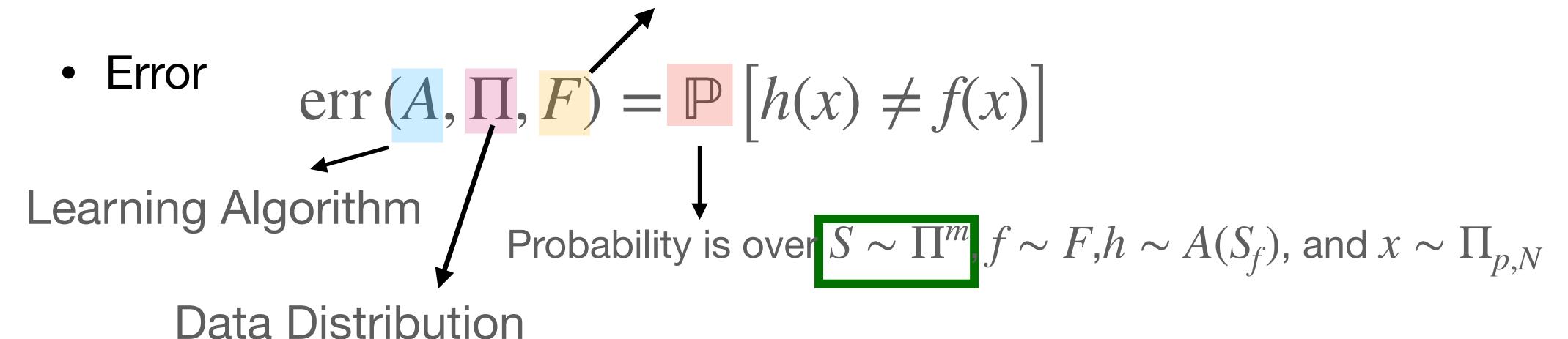


Data Distribution

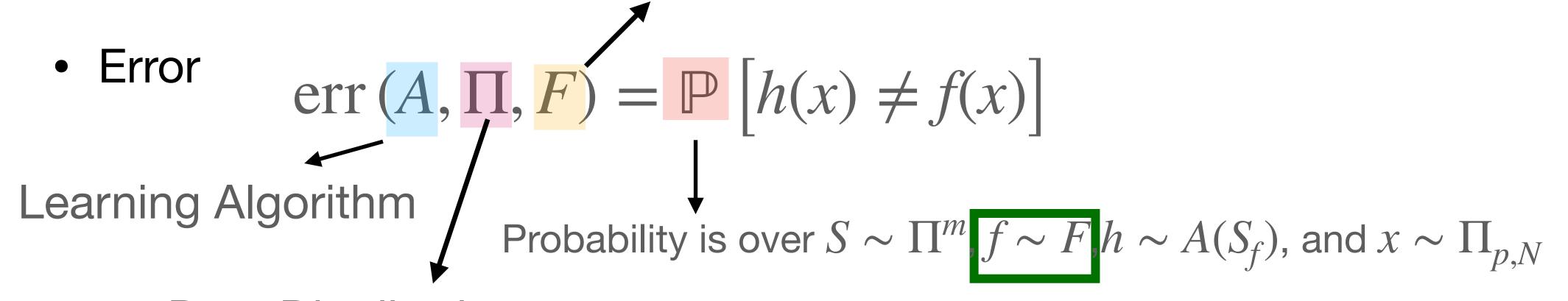
Prior distribution over labelling functions  $\subseteq Y^X$ 



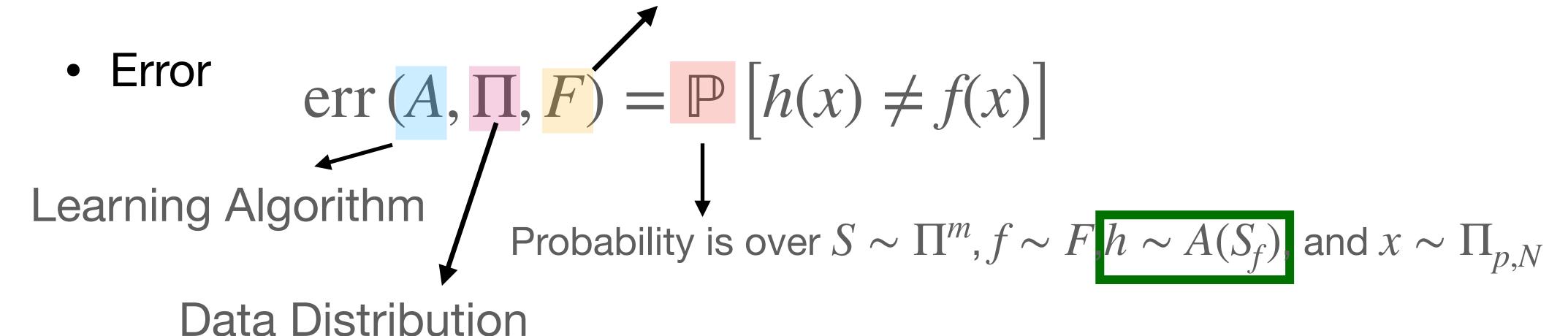
Data Distribution

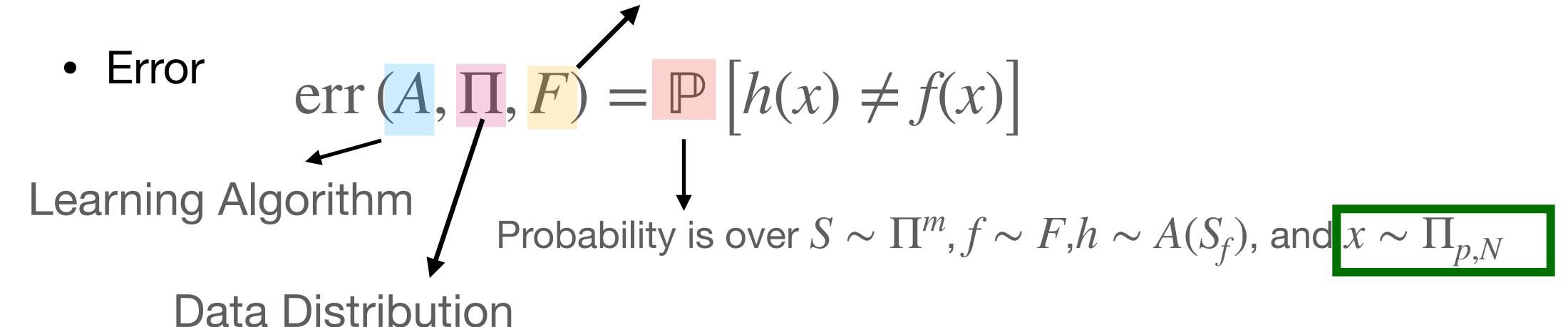


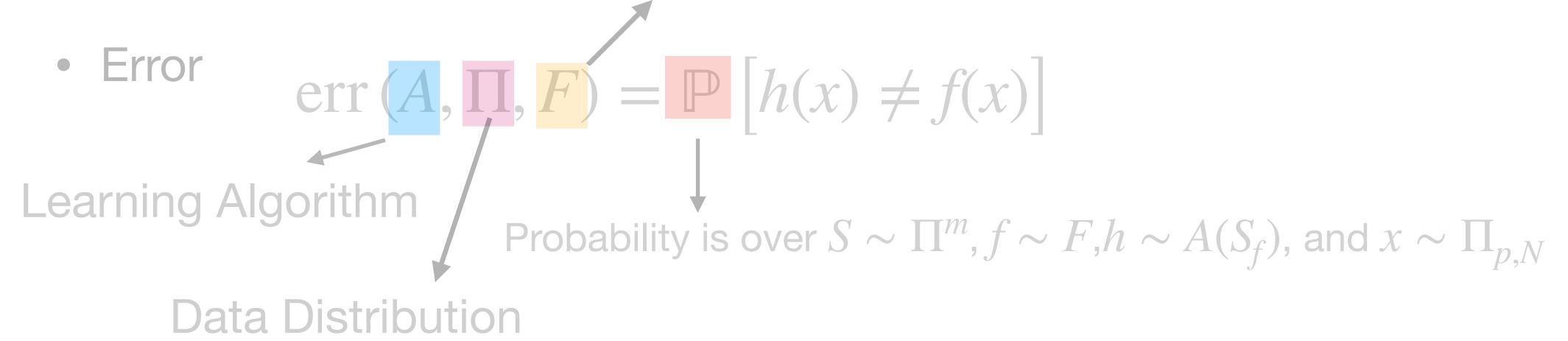
Prior distribution over labelling functions  $\subseteq Y^X$ 



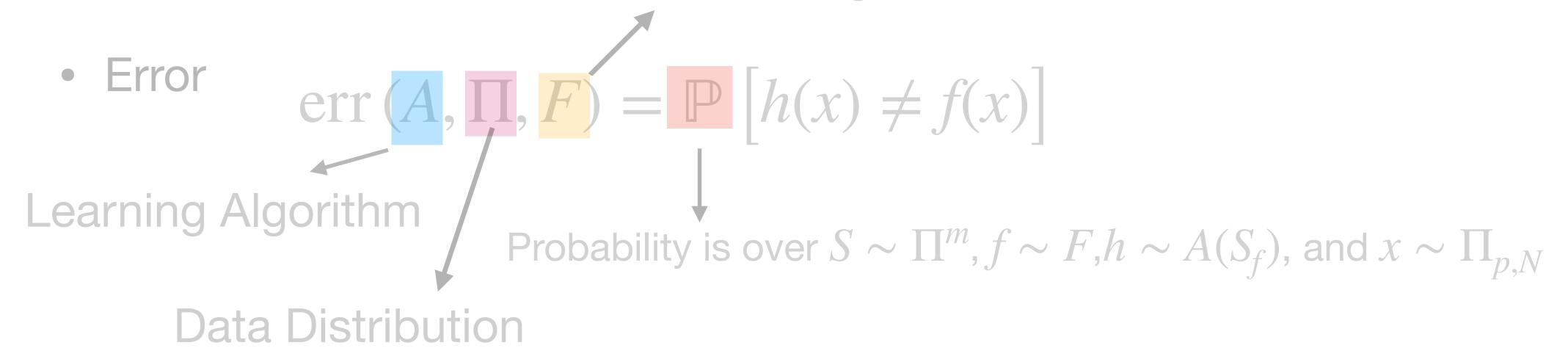
Data Distribution





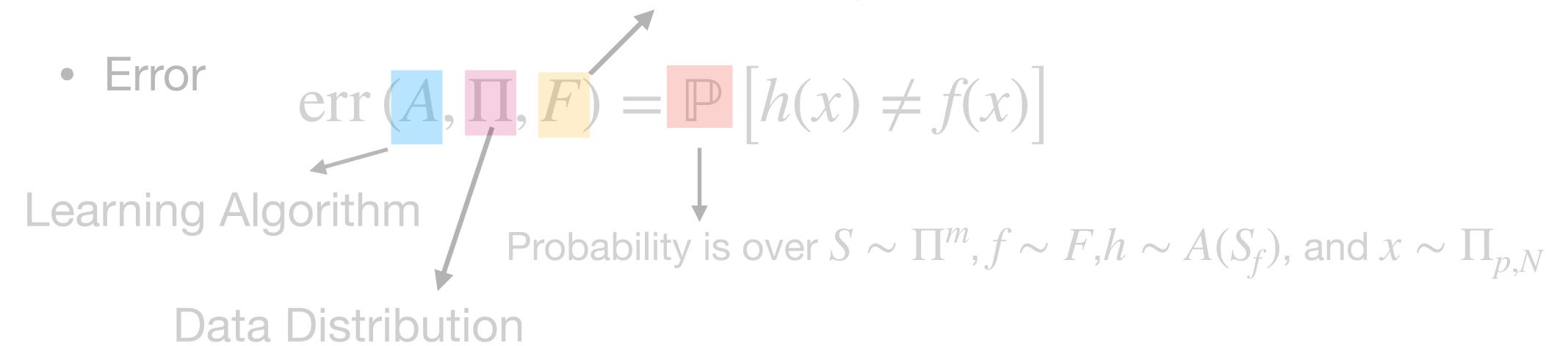


Prior distribution over labelling functions  $\subseteq Y^X$ 



Accuracy Discrepancy

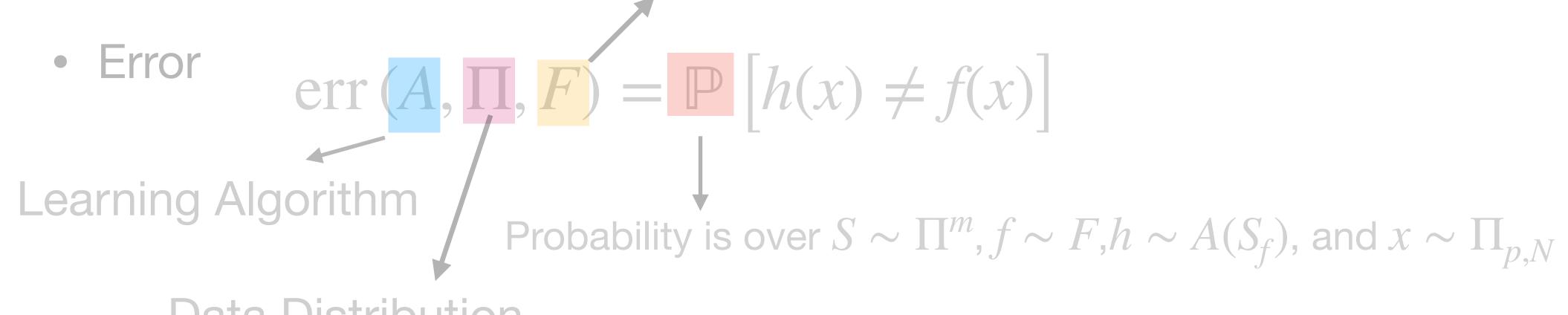
Prior distribution over labelling functions  $\subseteq Y^X$ 



Accuracy Discrepancy

$$\Gamma(A, \Pi, F) = \operatorname{err}_{\operatorname{Minority}}(A, \Pi, F) - \operatorname{err}(A, \Pi, F)$$

Prior distribution over labelling functions  $\subseteq Y^X$ 



Data Distribution

Accuracy Discrepancy

Marginalised over minority subpopulations

$$\Gamma(A, \Pi, F) = \operatorname{err}_{\operatorname{Minority}}(A, \Pi, F) - \operatorname{err}(A, \Pi, F)$$

Consider any  $(\epsilon, \delta)$ -DP algorithm that obtains low error on a long-tailed distribution.

Consider any  $(\epsilon, \delta)$ -DP algorithm that obtains low error on a long-tailed distribution.

(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

• (Privacy) Increases with privacy parameter  $\epsilon$ .

Consider any  $(\epsilon, \delta)$ -DP algorithm that obtains low error on a long-tailed distribution.

N: # Minority subpopulations

m: # Training points

(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

• (Privacy) Increases with privacy parameter  $\epsilon$ .

Consider any  $(\epsilon, \delta)$ -DP algorithm that obtains low error on a long-tailed distribution.

(Minority Subpopulations) Let 
$$\frac{\mathsf{N}}{m} \to c$$
 as  $N, m \to \infty$ .  $N: \#$  Minority subpopulations  $m: \#$  Training points

(Informal Theorem A) We prove an asymptotic lower bound for accuracy discrepancy which

• (Privacy) Increases with privacy parameter  $\epsilon$ .

Consider any  $(\epsilon, \delta)$ -DP algorithm that obtains low error on a long-tailed distribution.

(Minority Subpopulations) Let 
$$\frac{\mathsf{N}}{m} \to c$$
 as  $N, m \to \infty$ .  $N: \#$  Minority subpopulations  $m: \#$  Training points

- (Privacy) Increases with privacy parameter  $\epsilon$ .
- (Long-tailed) Increases with (relative) # of minority subpopulations c.

Consider any  $(\epsilon, \delta)$ -DP algorithm that obtains low error on a long-tailed distribution.

(Minority Subpopulations) Let 
$$\frac{N}{m} \to c$$
 as  $N, m \to \infty$ .

N: # Minority subpopulations

m: # Training points

F: Label prior

- (Privacy) Increases with privacy parameter  $\epsilon$ .
- (Long-tailed) Increases with (relative) # of minority subpopulations c.

Consider any  $(\epsilon, \delta)$ -DP algorithm that obtains low error on a long-tailed distribution.

(Minority Subpopulations) Let 
$$\frac{N}{m} \to c$$
 as  $N, m \to \infty$ . N: # Minority subpopulations m: # Training points F: Label prior

- (Privacy) Increases with privacy parameter  $\epsilon$ .
- (Long-tailed) Increases with (relative) # of minority subpopulations c.

Consider any  $(\epsilon, \delta)$ -DP algorithm that obtains low error on a long-tailed distribution.

(Minority Subpopulations) Let 
$$\frac{N}{m} \to c$$
 as  $N, m \to \infty$ .

(Label prior Entropy) Define  $\|F\|_{\infty} = \max_{x,y} \mathbb{P}_{f \sim F} \left[ f(x) = y \right]$ 

N: # Minority subpopulations m: # Training points F: Label prior

- (Privacy) Increases with privacy parameter  $\epsilon$ .
- (Long-tailed) Increases with (relative) # of minority subpopulations c.
- (Label prior) Increases with entropy of the label prior.

# Thank you